diff --git a/components/ral.ts b/components/ral.ts index 82ab4af..a937c2e 100644 --- a/components/ral.ts +++ b/components/ral.ts @@ -137,12 +137,6 @@ export const ralClassicPallette = { "hex": "#B89C50", "groupId": "ral_classic_1" }, - "1026": { - "code": "1026", - "name": "Люминесцентный жёлтый", - "hex": "#F5FF00", - "groupId": "ral_classic_1" - }, "1027": { "code": "1027", "name": "Карри жёлтый", @@ -173,18 +167,6 @@ export const ralClassicPallette = { "hex": "#EDAB56", "groupId": "ral_classic_1" }, - "1035": { - "code": "1035", - "name": "Перламутрово-бежевый", - "hex": "#A29985", - "groupId": "ral_classic_1" - }, - "1036": { - "code": "1036", - "name": "Перламутрово-золотой", - "hex": "#927549", - "groupId": "ral_classic_1" - }, "1037": { "code": "1037", "name": "Солнечно-жёлтый", @@ -221,18 +203,7 @@ export const ralClassicPallette = { "hex": "#E75B12", "groupId": "ral_classic_2" }, - "2005": { - "code": "2005", - "name": "Люминесцентный оранжевый", - "hex": "#FF2300", - "groupId": "ral_classic_2" - }, - "2007": { - "code": "2007", - "name": "Люминесцентный ярко-оранжевый", - "hex": "#FFA421", - "groupId": "ral_classic_2" - }, + "2008": { "code": "2008", "name": "Ярко-красно-оранжевый", @@ -263,12 +234,6 @@ export const ralClassicPallette = { "hex": "#DB6A50", "groupId": "ral_classic_2" }, - "2013": { - "code": "2013", - "name": "Перламутрово-оранжевый", - "hex": "#954527", - "groupId": "ral_classic_2" - }, "3000": { "code": "3000", "name": "Огненно-красный", @@ -377,18 +342,6 @@ export const ralClassicPallette = { "hex": "#D56D56", "groupId": "ral_classic_3" }, - "3024": { - "code": "3024", - "name": "Люминесцентный красный", - "hex": "#F70000", - "groupId": "ral_classic_3" - }, - "3026": { - "code": "3026", - "name": "Люминесцентный ярко-красный", - "hex": "#FF0000", - "groupId": "ral_classic_3" - }, "3027": { "code": "3027", "name": "Малиново-красный", @@ -407,18 +360,6 @@ export const ralClassicPallette = { "hex": "#AC323B", "groupId": "ral_classic_3" }, - "3032": { - "code": "3032", - "name": "Перламутрово-рубиновый", - "hex": "#711521", - "groupId": "ral_classic_3" - }, - "3033": { - "code": "3033", - "name": "Перламутрово-розовый", - "hex": "#B24C43", - "groupId": "ral_classic_3" - }, "4001": { "code": "4001", "name": "Красно-сиреневый", @@ -479,18 +420,6 @@ export const ralClassicPallette = { "hex": "#C63678", "groupId": "ral_classic_4" }, - "4011": { - "code": "4011", - "name": "Перламутрово-фиолетовый", - "hex": "#8773A1", - "groupId": "ral_classic_4" - }, - "4012": { - "code": "4012", - "name": "Перламутрово-ежевичный", - "hex": "#6B6880", - "groupId": "ral_classic_4" - }, "5000": { "code": "5000", "name": "Фиолетово-синий", @@ -629,18 +558,6 @@ export const ralClassicPallette = { "hex": "#6A93B0", "groupId": "ral_classic_5" }, - "5025": { - "code": "5025", - "name": "Перламутровый горечавково-синий", - "hex": "#296478", - "groupId": "ral_classic_5" - }, - "5026": { - "code": "5026", - "name": "Перламутровый ночной синий", - "hex": "#102C54", - "groupId": "ral_classic_5" - }, "6000": { "code": "6000", "name": "Патиново-зелёный", @@ -833,30 +750,13 @@ export const ralClassicPallette = { "hex": "#7FB0B2", "groupId": "ral_classic_6" }, - "6035": { - "code": "6035", - "name": "Перламутрово-зелёный", - "hex": "#1B542C", - "groupId": "ral_classic_6" - }, - "6036": { - "code": "6036", - "name": "Перламутровый опаловый зелёный", - "hex": "#005D4C", - "groupId": "ral_classic_6" - }, + "6037": { "code": "6037", "name": "Зелёный", "hex": "#008F39", "groupId": "ral_classic_6" }, - "6038": { - "code": "6038", - "name": "Люминесцентный зелёный", - "hex": "#00BB2E", - "groupId": "ral_classic_6" - }, "7000": { "code": "7000", "name": "Серая белка", @@ -1079,12 +979,7 @@ export const ralClassicPallette = { "hex": "#CFD0CF", "groupId": "ral_classic_7" }, - "7048": { - "code": "7048", - "name": "Перламутровый мышино-серый", - "hex": "#888175", - "groupId": "ral_classic_7" - }, + "8000": { "code": "8000", "name": "Зелёно-коричневый", @@ -1199,12 +1094,7 @@ export const ralClassicPallette = { "hex": "#4E3B2B", "groupId": "ral_classic_8" }, - "8029": { - "code": "8029", - "name": "Перламутровый медный", - "hex": "#773C27", - "groupId": "ral_classic_8" - }, + "9001": { "code": "9001", "name": "Кремово-белый", @@ -1235,18 +1125,6 @@ export const ralClassicPallette = { "hex": "#0A0A0D", "groupId": "ral_classic_9" }, - "9006": { - "code": "9006", - "name": "Бело-алюминиевый", - "hex": "#A5A8A6", - "groupId": "ral_classic_9" - }, - "9007": { - "code": "9007", - "name": "Тёмно-алюминиевый", - "hex": "#8F8F8C", - "groupId": "ral_classic_9" - }, "9010": { "code": "9010", "name": "Белый", @@ -1277,18 +1155,6 @@ export const ralClassicPallette = { "hex": "#CFD3CD", "groupId": "ral_classic_9" }, - "9022": { - "code": "9022", - "name": "Перламутровый светло-серый", - "hex": "#9C9C9C", - "groupId": "ral_classic_9" - }, - "9023": { - "code": "9023", - "name": "Перламутровый тёмно-серый", - "hex": "#7E8182", - "groupId": "ral_classic_9" - } } export type ralTypes = keyof typeof ralClassicPallette export const getColorHexFromRal = (col: keyof typeof ralClassicPallette) => { diff --git a/package-lock.json b/package-lock.json index 917efac..b1ac019 100644 --- a/package-lock.json +++ b/package-lock.json @@ -9,6 +9,7 @@ "dependencies": { "@artmizu/yandex-metrika-nuxt": "^1.0.4", "@monogrid/gainmap-js": "^3.0.5", + "@nodetoy/three-nodetoy": "^0.1.36", "@nuxt/image": "^1.7.0", "@nuxtjs/robots": "^4.0.0", "@nuxtjs/sitemap": "^5.3.5", @@ -1892,6 +1893,29 @@ "node": ">= 8" } }, + "node_modules/@nodetoy/shared-nodetoy": { + "version": "0.2.21", + "resolved": "https://registry.npmjs.org/@nodetoy/shared-nodetoy/-/shared-nodetoy-0.2.21.tgz", + "integrity": "sha512-itFQATEfWmbuYSBCHdVw6qY1mPME4JQ4jFEtbspgI+Dk7if4f7WXuNit2wFgLFUXPQ7c1UPUXZsJTBxVFDs6SA==", + "dependencies": { + "eventemitter3": "^4.0.7" + }, + "peerDependencies": { + "three": ">=0.143.0" + } + }, + "node_modules/@nodetoy/three-nodetoy": { + "version": "0.1.36", + "resolved": "https://registry.npmjs.org/@nodetoy/three-nodetoy/-/three-nodetoy-0.1.36.tgz", + "integrity": "sha512-qxsZucryVes7LeB/ezW/dFeESicEk2DrrjwHPwzbXXXKaaCS7/8OBCay8ZzoilVYYoZpeoNNu13KSwx8M6sPmQ==", + "dependencies": { + "@nodetoy/shared-nodetoy": "^0.2.21", + "three": ">=0.143.0" + }, + "peerDependencies": { + "three": ">=0.143.0" + } + }, "node_modules/@npmcli/agent": { "version": "2.2.2", "resolved": "https://registry.npmjs.org/@npmcli/agent/-/agent-2.2.2.tgz", @@ -8305,6 +8329,12 @@ "node": ">=6" } }, + "node_modules/eventemitter3": { + "version": "4.0.7", + "resolved": "https://registry.npmjs.org/eventemitter3/-/eventemitter3-4.0.7.tgz", + "integrity": "sha512-8guHBZCwKnFhYdHr2ysuRWErTwhoN2X8XELRlrRwpmfeY2jjuUN4taQMsULKUVo1K4DvZl+0pgfyoysHxvmvEw==", + "license": "MIT" + }, "node_modules/events": { "version": "3.3.0", "resolved": "https://registry.npmjs.org/events/-/events-3.3.0.tgz", diff --git a/package.json b/package.json index 0d76d43..45e86d8 100644 --- a/package.json +++ b/package.json @@ -12,6 +12,7 @@ "dependencies": { "@artmizu/yandex-metrika-nuxt": "^1.0.4", "@monogrid/gainmap-js": "^3.0.5", + "@nodetoy/three-nodetoy": "^0.1.36", "@nuxt/image": "^1.7.0", "@nuxtjs/robots": "^4.0.0", "@nuxtjs/sitemap": "^5.3.5", diff --git a/utils/dith.frag b/utils/dith.frag new file mode 100644 index 0000000..4fde669 --- /dev/null +++ b/utils/dith.frag @@ -0,0 +1,10 @@ +#include + +// vec2 st = vec2(vDistance,vDistance)/vec2(u_resolution); +vec2 st = vPosition.xy / vec2(u_resolution); + +vec3 pos = vec3(st * 5.0, 1.0 * 0.5); + +vec3 color = vec3(noise(pos)); + +// gl_FragColor = vec4(normal, 1.0); \ No newline at end of file diff --git a/utils/main.frag b/utils/main.frag new file mode 100644 index 0000000..971cacb --- /dev/null +++ b/utils/main.frag @@ -0,0 +1,57 @@ +uniform vec2 u_resolution; +uniform vec2 u_mouse; +uniform float u_time; +varying float vDistance; +varying vec3 vPosition; + +float random(in float x) { + return fract(sin(x) * 1e4); +} + + // Based on Morgan McGuire @morgan3d + // https://www.shadertoy.com/view/4dS3Wd +float noise(in vec3 p) { + const vec3 step = vec3(110.0, 241.0, 171.0); + + vec3 i = floor(p); + vec3 f = fract(p); + + // For performance, compute the base input to a + // 1D random from the integer part of the + // argument and the incremental change to the + // 1D based on the 3D -> 1D wrapping + float n = dot(i, step); + + vec3 u = f * f * (3.0 - 2.0 * f); + return mix(mix(mix(random(n + dot(step, vec3(0, 0, 0))), random(n + dot(step, vec3(1, 0, 0))), u.x), mix(random(n + dot(step, vec3(0, 1, 0))), random(n + dot(step, vec3(1, 1, 0))), u.x), u.y), mix(mix(random(n + dot(step, vec3(0, 0, 1))), random(n + dot(step, vec3(1, 0, 1))), u.x), mix(random(n + dot(step, vec3(0, 1, 1))), random(n + dot(step, vec3(1, 1, 1))), u.x), u.y), u.z); +} + +// +// by inigo quilez +// + +vec3 hash3(vec2 p) { + vec3 q = vec3(dot(p, vec2(127.1, 311.7)), dot(p, vec2(269.5, 183.3)), dot(p, vec2(419.2, 371.9))); + return fract(sin(q) * 43758.5453); +} + +float iqnoise(in vec2 x, float u, float v) { + vec2 p = floor(x); + vec2 f = fract(x); + + float k = 1.0 + 63.0 * pow(1.0 - v, 4.0); + + float va = 0.0; + float wt = 0.0; + for(int j = -2; j <= 2; j++) for(int i = -2; i <= 2; i++) { + vec2 g = vec2(float(i), float(j)); + vec3 o = hash3(p + g) * vec3(u, u, 1.0); + vec2 r = g - f + o.xy; + float d = dot(r, r); + float ww = pow(1.0 - smoothstep(0.0, 1.414, sqrt(d)), k); + va += o.z * ww; + wt += ww; + } + + return va / wt; +} \ No newline at end of file diff --git a/utils/material.ts b/utils/material.ts index 94fa2ee..3921da0 100644 --- a/utils/material.ts +++ b/utils/material.ts @@ -1,5 +1,12 @@ -import { Color, DataTexture, DoubleSide, MeshBasicMaterial, MeshStandardMaterial, RepeatWrapping, RGBFormat, Texture, TextureLoader, Vector2 } from "three" +import { type patternIds } from './../components/pattern'; +import { Color, DataTexture, DoubleSide, MeshBasicMaterial, MeshStandardMaterial, RepeatWrapping, RGBFormat, ShaderMaterial, Texture, TextureLoader, Vector2 } from "three" import { useLoader, } from '@tresjs/core' +import { NodeToyMaterial } from '@nodetoy/three-nodetoy'; +import { data } from './shaderData.ts'; +import vertexShader from './vertex.vert?raw' +import mainShader from './main.frag?raw' +import normalShader from './normal.frag?raw' +import dithShader from './dith.frag?raw' import { getFilename, patterns, } from "~/components/pattern" @@ -46,6 +53,40 @@ function generateNoiseTexture(width: number, height: number) { return texture; } +const m_onBeforeCompile = (shader) => { + // Добавляем uniform переменную + shader.uniforms.u_resolution = { value: new Vector2(20.0, 20.0) }; + + // Изменяем вершинный шейдер + shader.vertexShader = ` + varying float vDistance; + varying vec3 vPosition; + ${shader.vertexShader} + `.replace( + `#include `, + `#include + ${vertexShader} + ` + ); + + // // Изменяем фрагментный шейдер + shader.fragmentShader = ` + ${mainShader} + ${shader.fragmentShader}` + .replace( + '#include ', + ` + #include + ${normalShader} + ` + ) + .replace( + `#include `, + `#include + ${dithShader} + ` + ); +}; const m = new MeshStandardMaterial({ // alphaMap: pattern ? texture : null, transparent: true, @@ -55,44 +96,7 @@ const m = new MeshStandardMaterial({ side: DoubleSide, }) -const m_onBeforeCompile = (shader) => { - // Добавляем uniform переменную - shader.uniforms.customUniform = { value: 1.0 }; - - // Изменяем вершинный шейдер - shader.vertexShader = ` - uniform float customUniform; - varying vec2 vPosition; - ${shader.vertexShader} - `.replace( - `#include `, - `#include - vPosition = position.xy; - ` - ); - - // Изменяем фрагментный шейдер - shader.fragmentShader = ` - float random(float p) { - return fract(sin(p) * 10000.0); - } - - float noise(vec2 p) { - return random((p.x + p.y) * 10000.0); - } - ${shader.fragmentShader} - ` - .replace( - `#include `, - `#include - - float noise_v = noise(gl_FragColor.rg); - float clamped_noise = clamp(noise_v, 0.85, 1.0); - gl_FragColor.rgb *= vec3(clamped_noise); - ` - ); -}; -export const set_material = (scene: any, color: any, pattern: { pattern: patternTypes, count: number } | undefined = undefined) => { +export const set_material = (scene: any, color: any, pattern: { pattern: patternIds, count: number } | undefined = undefined) => { let c = color const material = m.clone() diff --git a/utils/normal.frag b/utils/normal.frag new file mode 100644 index 0000000..cf5fc0e --- /dev/null +++ b/utils/normal.frag @@ -0,0 +1,9 @@ +vec2 normal_st = vec2(gl_FragCoord.x * 0.005, vPosition.y) * vec2(1000 * 2); +// vec2 normal_st = vec2(random(vDistance), random(vDistance))/vec2(u_resolution); +vec3 normal_pos = vec3(normal_st * 5.0, 1.0 * 0.5); + +// vec3 pos_xz = vPosition * vec3(1.0, 0.0, 1.0); +// vec3 distance = pos_xz + vec3(0.15); +vec3 normal_noise = vec3(noise(normal_pos)); +vec3 modifiedNormal = normal * normal_noise * vec3(0.5); +normal = modifiedNormal; \ No newline at end of file diff --git a/utils/shaderData.ts b/utils/shaderData.ts new file mode 100644 index 0000000..94af0b9 --- /dev/null +++ b/utils/shaderData.ts @@ -0,0 +1,2416 @@ +export const data = { + "version": 1, + "uniforms": [ + { + "name": "_modelMatrix", + "type": "mat4", + "value": { + "elements": [ + 1, + 0, + 0, + 0, + 0, + 1, + 0, + 0, + 0, + 0, + 1, + 0, + 0, + 0, + 0, + 1 + ] + } + }, + { + "name": "_normalMatrix", + "type": "mat3", + "value": { + "elements": [ + 1, + 0, + 0, + 0, + 1, + 0, + 0, + 0, + 1 + ] + } + }, + { + "name": "_viewMatrix", + "type": "mat4", + "value": { + "elements": [ + 1, + 0, + 0, + 0, + 0, + 1, + 0, + 0, + 0, + 0, + 1, + 0, + 0, + 0, + 0, + 1 + ] + } + } + ], + "vertex": `// Created with NodeToy | Three.js r149 +// +// uniforms +uniform mat4 _modelMatrix; uniform mat3 _normalMatrix; uniform mat4 _viewMatrix; +// attributes +// varys +varying vec3 nodeVary0; varying vec3 nodeVary1; varying vec4 nodeVary2; varying vec3 nodeVary3; varying vec3 nodeVary4; varying vec3 nodeVary5; varying vec2 nodeVary6; +// vars +vec4 nodeVar0; vec4 nodeVar1; vec3 nodeVar2; vec3 nodeVar3; vec3 nodeVar4; vec4 nodeVar5; vec4 nodeVar6; vec3 nodeVar7; vec3 nodeVar8; +// codes +// variables +// + + + +#define STANDARD +varying vec3 vViewPosition; +#ifdef USE_TRANSMISSION + varying vec3 vWorldPosition; +#endif + +#define PI 3.141592653589793 +#define PI2 6.283185307179586 +#define PI_HALF 1.5707963267948966 +#define RECIPROCAL_PI 0.3183098861837907 +#define RECIPROCAL_PI2 0.15915494309189535 +#define EPSILON 1e-6 +#ifndef saturate +// may have defined saturate() already +#define saturate( a ) clamp( a, 0.0, 1.0 ) +#endif +#define whiteComplement( a ) ( 1.0 - saturate( a ) ) +float pow2( const in float x ) { return x*x; } +vec3 pow2( const in vec3 x ) { return x*x; } +float pow3( const in float x ) { return x*x*x; } +float pow4( const in float x ) { float x2 = x*x; return x2*x2; } +float max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); } +float average( const in vec3 v ) { return dot( v, vec3( 0.3333333 ) ); } +// expects values in the range of [0,1]x[0,1], returns values in the [0,1] range. +// do not collapse into a single function per: http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/ +highp float rand( const in vec2 uv ) { + const highp float a = 12.9898, b = 78.233, c = 43758.5453; + highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI ); + return fract( sin( sn ) * c ); +} +#ifdef HIGH_PRECISION + float precisionSafeLength( vec3 v ) { return length( v ); } +#else + float precisionSafeLength( vec3 v ) { + float maxComponent = max3( abs( v ) ); + return length( v / maxComponent ) * maxComponent; + } +#endif +struct IncidentLight { + vec3 color; + vec3 direction; + bool visible; +}; +struct ReflectedLight { + vec3 directDiffuse; + vec3 directSpecular; + vec3 indirectDiffuse; + vec3 indirectSpecular; +}; +struct GeometricContext { + vec3 position; + vec3 normal; + vec3 viewDir; +#ifdef USE_CLEARCOAT + vec3 clearcoatNormal; +#endif +}; +vec3 transformDirection( in vec3 dir, in mat4 matrix ) { + return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); +} +vec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) { + // dir can be either a direction vector or a normal vector + // upper-left 3x3 of matrix is assumed to be orthogonal + return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz ); +} +mat3 transposeMat3( const in mat3 m ) { + mat3 tmp; + tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x ); + tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y ); + tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z ); + return tmp; +} +float luminance( const in vec3 rgb ) { + // assumes rgb is in linear color space with sRGB primaries and D65 white point + const vec3 weights = vec3( 0.2126729, 0.7151522, 0.0721750 ); + return dot( weights, rgb ); +} +bool isPerspectiveMatrix( mat4 m ) { + return m[ 2 ][ 3 ] == - 1.0; +} +vec2 equirectUv( in vec3 dir ) { + // dir is assumed to be unit length + float u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5; + float v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5; + return vec2( u, v ); +} + +#ifdef USE_UV + #ifdef UVS_VERTEX_ONLY + vec2 vUv; + #else + varying vec2 vUv; + #endif + uniform mat3 uvTransform; +#endif + +#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP ) + attribute vec2 uv2; + varying vec2 vUv2; + uniform mat3 uv2Transform; +#endif + +#ifdef USE_DISPLACEMENTMAP + uniform sampler2D displacementMap; + uniform float displacementScale; + uniform float displacementBias; +#endif + +#if defined( USE_COLOR_ALPHA ) + varying vec4 vColor; +#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) + varying vec3 vColor; +#endif + +#ifdef USE_FOG + varying float vFogDepth; +#endif + +#ifndef FLAT_SHADED + varying vec3 vNormal; + #ifdef USE_TANGENT + varying vec3 vTangent; + varying vec3 vBitangent; + #endif +#endif + +#ifdef USE_MORPHTARGETS + uniform float morphTargetBaseInfluence; + #ifdef MORPHTARGETS_TEXTURE + uniform float morphTargetInfluences[ MORPHTARGETS_COUNT ]; + uniform sampler2DArray morphTargetsTexture; + uniform ivec2 morphTargetsTextureSize; + vec4 getMorph( const in int vertexIndex, const in int morphTargetIndex, const in int offset ) { + int texelIndex = vertexIndex * MORPHTARGETS_TEXTURE_STRIDE + offset; + int y = texelIndex / morphTargetsTextureSize.x; + int x = texelIndex - y * morphTargetsTextureSize.x; + ivec3 morphUV = ivec3( x, y, morphTargetIndex ); + return texelFetch( morphTargetsTexture, morphUV, 0 ); + } + #else + #ifndef USE_MORPHNORMALS + uniform float morphTargetInfluences[ 8 ]; + #else + uniform float morphTargetInfluences[ 4 ]; + #endif + #endif +#endif + +#ifdef USE_SKINNING + uniform mat4 bindMatrix; + uniform mat4 bindMatrixInverse; + uniform highp sampler2D boneTexture; + uniform int boneTextureSize; + mat4 getBoneMatrix( const in float i ) { + float j = i * 4.0; + float x = mod( j, float( boneTextureSize ) ); + float y = floor( j / float( boneTextureSize ) ); + float dx = 1.0 / float( boneTextureSize ); + float dy = 1.0 / float( boneTextureSize ); + y = dy * ( y + 0.5 ); + vec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) ); + vec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) ); + vec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) ); + vec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) ); + mat4 bone = mat4( v1, v2, v3, v4 ); + return bone; + } +#endif + +#if NUM_SPOT_LIGHT_COORDS > 0 + uniform mat4 spotLightMatrix[ NUM_SPOT_LIGHT_COORDS ]; + varying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ]; +#endif +#ifdef USE_SHADOWMAP + #if NUM_DIR_LIGHT_SHADOWS > 0 + uniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ]; + varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ]; + struct DirectionalLightShadow { + float shadowBias; + float shadowNormalBias; + float shadowRadius; + vec2 shadowMapSize; + }; + uniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ]; + #endif + #if NUM_SPOT_LIGHT_SHADOWS > 0 + struct SpotLightShadow { + float shadowBias; + float shadowNormalBias; + float shadowRadius; + vec2 shadowMapSize; + }; + uniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ]; + #endif + #if NUM_POINT_LIGHT_SHADOWS > 0 + uniform mat4 pointShadowMatrix[ NUM_POINT_LIGHT_SHADOWS ]; + varying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ]; + struct PointLightShadow { + float shadowBias; + float shadowNormalBias; + float shadowRadius; + vec2 shadowMapSize; + float shadowCameraNear; + float shadowCameraFar; + }; + uniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ]; + #endif + /* + #if NUM_RECT_AREA_LIGHTS > 0 + // TODO (abelnation): uniforms for area light shadows + #endif + */ +#endif + +#ifdef USE_LOGDEPTHBUF + #ifdef USE_LOGDEPTHBUF_EXT + varying float vFragDepth; + varying float vIsPerspective; + #else + uniform float logDepthBufFC; + #endif +#endif + +#if NUM_CLIPPING_PLANES > 0 + varying vec3 vClipPosition; +#endif + +void main() { +nodeVary1 = position; + nodeVar0 = ( vec4( nodeVary1, 0.0 ) ); + nodeVar1 = ( _modelMatrix * nodeVar0 ); + nodeVar2 = normalize( nodeVar1.xyz ); + nodeVar3 = nodeVar2; + nodeVary0 = nodeVar3; + nodeVary2 = tangent; + nodeVary4 = normal; + nodeVar4 = ( _normalMatrix * nodeVary4 ); + nodeVar5 = ( vec4( nodeVar4, 0.0 ) ); + nodeVar6 = ( nodeVar5 * _viewMatrix ); + nodeVar7 = normalize( nodeVar6.xyz ); + nodeVar8 = nodeVar7; + nodeVary3 = nodeVar8; + nodeVary5 = normal; + nodeVary6 = uv; + + +#ifdef USE_UV + vUv = ( uvTransform * vec3( uv, 1 ) ).xy; +#endif + +#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP ) + vUv2 = ( uv2Transform * vec3( uv2, 1 ) ).xy; +#endif + +#if defined( USE_COLOR_ALPHA ) + vColor = vec4( 1.0 ); +#elif defined( USE_COLOR ) || defined( USE_INSTANCING_COLOR ) + vColor = vec3( 1.0 ); +#endif +#ifdef USE_COLOR + vColor *= color; +#endif +#ifdef USE_INSTANCING_COLOR + vColor.xyz *= instanceColor.xyz; +#endif + +#if defined( USE_MORPHCOLORS ) && defined( MORPHTARGETS_TEXTURE ) + // morphTargetBaseInfluence is set based on BufferGeometry.morphTargetsRelative value: + // When morphTargetsRelative is false, this is set to 1 - sum(influences); this results in normal = sum((target - base) * influence) + // When morphTargetsRelative is true, this is set to 1; as a result, all morph targets are simply added to the base after weighting + vColor *= morphTargetBaseInfluence; + for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) { + #if defined( USE_COLOR_ALPHA ) + if ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ) * morphTargetInfluences[ i ]; + #elif defined( USE_COLOR ) + if ( morphTargetInfluences[ i ] != 0.0 ) vColor += getMorph( gl_VertexID, i, 2 ).rgb * morphTargetInfluences[ i ]; + #endif + } +#endif + +vec3 objectNormal = vec3( normal ); +#ifdef USE_TANGENT + vec3 objectTangent = vec3( tangent.xyz ); +#endif + +#ifdef USE_MORPHNORMALS + // morphTargetBaseInfluence is set based on BufferGeometry.morphTargetsRelative value: + // When morphTargetsRelative is false, this is set to 1 - sum(influences); this results in normal = sum((target - base) * influence) + // When morphTargetsRelative is true, this is set to 1; as a result, all morph targets are simply added to the base after weighting + objectNormal *= morphTargetBaseInfluence; + #ifdef MORPHTARGETS_TEXTURE + for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) { + if ( morphTargetInfluences[ i ] != 0.0 ) objectNormal += getMorph( gl_VertexID, i, 1 ).xyz * morphTargetInfluences[ i ]; + } + #else + objectNormal += morphNormal0 * morphTargetInfluences[ 0 ]; + objectNormal += morphNormal1 * morphTargetInfluences[ 1 ]; + objectNormal += morphNormal2 * morphTargetInfluences[ 2 ]; + objectNormal += morphNormal3 * morphTargetInfluences[ 3 ]; + #endif +#endif + +#ifdef USE_SKINNING + mat4 boneMatX = getBoneMatrix( skinIndex.x ); + mat4 boneMatY = getBoneMatrix( skinIndex.y ); + mat4 boneMatZ = getBoneMatrix( skinIndex.z ); + mat4 boneMatW = getBoneMatrix( skinIndex.w ); +#endif + +#ifdef USE_SKINNING + mat4 skinMatrix = mat4( 0.0 ); + skinMatrix += skinWeight.x * boneMatX; + skinMatrix += skinWeight.y * boneMatY; + skinMatrix += skinWeight.z * boneMatZ; + skinMatrix += skinWeight.w * boneMatW; + skinMatrix = bindMatrixInverse * skinMatrix * bindMatrix; + objectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz; + #ifdef USE_TANGENT + objectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz; + #endif +#endif + +vec3 transformedNormal = objectNormal; +#ifdef USE_INSTANCING + // this is in lieu of a per-instance normal-matrix + // shear transforms in the instance matrix are not supported + mat3 m = mat3( instanceMatrix ); + transformedNormal /= vec3( dot( m[ 0 ], m[ 0 ] ), dot( m[ 1 ], m[ 1 ] ), dot( m[ 2 ], m[ 2 ] ) ); + transformedNormal = m * transformedNormal; +#endif +transformedNormal = normalMatrix * transformedNormal; +#ifdef FLIP_SIDED + transformedNormal = - transformedNormal; +#endif +#ifdef USE_TANGENT + vec3 transformedTangent = ( modelViewMatrix * vec4( objectTangent, 0.0 ) ).xyz; + #ifdef FLIP_SIDED + transformedTangent = - transformedTangent; + #endif +#endif + +#ifndef FLAT_SHADED // normal is computed with derivatives when FLAT_SHADED + vNormal = normalize( transformedNormal ); + #ifdef USE_TANGENT + vTangent = normalize( transformedTangent ); + vBitangent = normalize( cross( vNormal, vTangent ) * tangent.w ); + #endif +#endif + +vec3 transformed = vec3( position ); + +#ifdef USE_MORPHTARGETS + // morphTargetBaseInfluence is set based on BufferGeometry.morphTargetsRelative value: + // When morphTargetsRelative is false, this is set to 1 - sum(influences); this results in position = sum((target - base) * influence) + // When morphTargetsRelative is true, this is set to 1; as a result, all morph targets are simply added to the base after weighting + transformed *= morphTargetBaseInfluence; + #ifdef MORPHTARGETS_TEXTURE + for ( int i = 0; i < MORPHTARGETS_COUNT; i ++ ) { + if ( morphTargetInfluences[ i ] != 0.0 ) transformed += getMorph( gl_VertexID, i, 0 ).xyz * morphTargetInfluences[ i ]; + } + #else + transformed += morphTarget0 * morphTargetInfluences[ 0 ]; + transformed += morphTarget1 * morphTargetInfluences[ 1 ]; + transformed += morphTarget2 * morphTargetInfluences[ 2 ]; + transformed += morphTarget3 * morphTargetInfluences[ 3 ]; + #ifndef USE_MORPHNORMALS + transformed += morphTarget4 * morphTargetInfluences[ 4 ]; + transformed += morphTarget5 * morphTargetInfluences[ 5 ]; + transformed += morphTarget6 * morphTargetInfluences[ 6 ]; + transformed += morphTarget7 * morphTargetInfluences[ 7 ]; + #endif + #endif +#endif + +#ifdef USE_SKINNING + vec4 skinVertex = bindMatrix * vec4( transformed, 1.0 ); + vec4 skinned = vec4( 0.0 ); + skinned += boneMatX * skinVertex * skinWeight.x; + skinned += boneMatY * skinVertex * skinWeight.y; + skinned += boneMatZ * skinVertex * skinWeight.z; + skinned += boneMatW * skinVertex * skinWeight.w; + transformed = ( bindMatrixInverse * skinned ).xyz; +#endif + +#ifdef USE_DISPLACEMENTMAP + transformed += normalize( objectNormal ) * ( texture2D( displacementMap, vUv ).x * displacementScale + displacementBias ); +#endif + +vec4 mvPosition = vec4( transformed, 1.0 ); +#ifdef USE_INSTANCING + mvPosition = instanceMatrix * mvPosition; +#endif +mvPosition = modelViewMatrix * mvPosition; +gl_Position = projectionMatrix * mvPosition; + +#ifdef USE_LOGDEPTHBUF + #ifdef USE_LOGDEPTHBUF_EXT + vFragDepth = 1.0 + gl_Position.w; + vIsPerspective = float( isPerspectiveMatrix( projectionMatrix ) ); + #else + if ( isPerspectiveMatrix( projectionMatrix ) ) { + gl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0; + gl_Position.z *= gl_Position.w; + } + #endif +#endif + +#if NUM_CLIPPING_PLANES > 0 + vClipPosition = - mvPosition.xyz; +#endif + + vViewPosition = - mvPosition.xyz; + +#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP ) || defined ( USE_TRANSMISSION ) || NUM_SPOT_LIGHT_COORDS > 0 + vec4 worldPosition = vec4( transformed, 1.0 ); + #ifdef USE_INSTANCING + worldPosition = instanceMatrix * worldPosition; + #endif + worldPosition = modelMatrix * worldPosition; +#endif + +#if ( defined( USE_SHADOWMAP ) && ( NUM_DIR_LIGHT_SHADOWS > 0 || NUM_POINT_LIGHT_SHADOWS > 0 ) ) || ( NUM_SPOT_LIGHT_COORDS > 0 ) + // Offsetting the position used for querying occlusion along the world normal can be used to reduce shadow acne. + vec3 shadowWorldNormal = inverseTransformDirection( transformedNormal, viewMatrix ); + vec4 shadowWorldPosition; +#endif +#if defined( USE_SHADOWMAP ) + #if NUM_DIR_LIGHT_SHADOWS > 0 + #pragma unroll_loop_start + for ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) { + shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 ); + vDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition; + } + #pragma unroll_loop_end + #endif + #if NUM_POINT_LIGHT_SHADOWS > 0 + #pragma unroll_loop_start + for ( int i = 0; i < NUM_POINT_LIGHT_SHADOWS; i ++ ) { + shadowWorldPosition = worldPosition + vec4( shadowWorldNormal * pointLightShadows[ i ].shadowNormalBias, 0 ); + vPointShadowCoord[ i ] = pointShadowMatrix[ i ] * shadowWorldPosition; + } + #pragma unroll_loop_end + #endif + /* + #if NUM_RECT_AREA_LIGHTS > 0 + // TODO (abelnation): update vAreaShadowCoord with area light info + #endif + */ +#endif +// spot lights can be evaluated without active shadow mapping (when SpotLight.map is used) +#if NUM_SPOT_LIGHT_COORDS > 0 + #pragma unroll_loop_start + for ( int i = 0; i < NUM_SPOT_LIGHT_COORDS; i ++ ) { + shadowWorldPosition = worldPosition; + #if ( defined( USE_SHADOWMAP ) && UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS ) + shadowWorldPosition.xyz += shadowWorldNormal * spotLightShadows[ i ].shadowNormalBias; + #endif + vSpotLightCoord[ i ] = spotLightMatrix[ i ] * shadowWorldPosition; + } + #pragma unroll_loop_end +#endif + + +#ifdef USE_FOG + vFogDepth = - mvPosition.z; +#endif + +#ifdef USE_TRANSMISSION + vWorldPosition = worldPosition.xyz; +#endif +} + +`, + "fragment": `// Created with NodeToy | Three.js r149 +// +// uniforms +// attributes +// varys +varying vec3 nodeVary0; varying vec3 nodeVary1; varying vec4 nodeVary2; varying vec3 nodeVary3; varying vec3 nodeVary4; varying vec3 nodeVary5; varying vec2 nodeVary6; +// vars +vec3 nodeVar0; vec3 nodeVar1; vec3 nodeVar2; vec3 nodeVar3; vec3 nodeVar4; vec3 nodeVar5; vec3 nodeVar6; vec3 nodeVar7; float nodeVar8; vec3 nodeVar9; +// codes +vec3 customFn_eghOGp7cxCWY ( float height ) { + + + bool invertY = false; + float intensity = float(0.01) * 0.1; + mat3 TangentMatrix = mat3(nodeVar1,nodeVar6,nodeVar7); + + vec3 worldDerivativeX = dFdx(nodeVary0); + vec3 worldDerivativeY = dFdy(nodeVary0); + vec3 crossX = cross(TangentMatrix[2].xyz, worldDerivativeX); + vec3 crossY = cross(worldDerivativeY, TangentMatrix[2].xyz); + float d = dot(worldDerivativeX, crossY); + float sgn = d < 0.0 ? (-1.f) : 1.f; + float surface = sgn / max(0.00000000000001192093f, abs(d)); + float dHdx = dFdx(height); + float dHdy = dFdy(height); + vec3 surfGrad = surface * (dHdx*crossY + dHdy*crossX); + vec3 norm = normalize(TangentMatrix[2].xyz - (intensity * surfGrad)); + norm = norm * TangentMatrix; + // Invert the green channel if necessary + if (invertY) + { + norm.g = 1.0 - norm.g; + } + return norm * 0.5 + 0.5; + + } +vec3 mod2D289_2Bgi5lZkJkau ( vec3 x ) { return x - floor( x * ( 1.0 / 289.0 ) ) * 289.0; } + vec2 mod2D289_2Bgi5lZkJkau( vec2 x ) { return x - floor( x * ( 1.0 / 289.0 ) ) * 289.0; } + vec3 permute_2Bgi5lZkJkau( vec3 x ) { return mod2D289_2Bgi5lZkJkau( ( ( x * 34.0 ) + 1.0 ) * x ); } + float snoise_2Bgi5lZkJkau( vec2 v ){ + const vec4 C = vec4( 0.211324865405187, 0.366025403784439, -0.577350269189626, 0.024390243902439 ); + vec2 i = floor( v + dot( v, C.yy ) ); + vec2 x0 = v - i + dot( i, C.xx ); + vec2 i1; + i1 = ( x0.x > x0.y ) ? vec2( 1.0, 0.0 ) : vec2( 0.0, 1.0 ); + vec4 x12 = x0.xyxy + C.xxzz; + x12.xy -= i1; + i = mod2D289_2Bgi5lZkJkau( i ); + vec3 p = permute_2Bgi5lZkJkau( permute_2Bgi5lZkJkau( i.y + vec3( 0.0, i1.y, 1.0 ) ) + i.x + vec3( 0.0, i1.x, 1.0 ) ); + vec3 m = max( 0.5 - vec3( dot( x0, x0 ), dot( x12.xy, x12.xy ), dot( x12.zw, x12.zw ) ), 0.0 ); + m = m * m; + m = m * m; + vec3 x = 2.0 * fract( p * C.www ) - 1.0; + vec3 h = abs( x ) - 0.5; + vec3 ox = floor( x + 0.5 ); + vec3 a0 = x - ox; + m *= 1.79284291400159 - 0.85373472095314 * ( a0 * a0 + h * h ); + vec3 g; + g.x = a0.x * x0.x + h.x * x0.y; + g.yz = a0.yz * x12.xz + h.yz * x12.yw; + return 130.0 * dot( m, g ); + } +float customFn_gDyL2B38DfFZ ( vec2 uv, float scale ) { + + float noise = snoise_2Bgi5lZkJkau( uv * scale ); + + noise = noise*0.5 + 0.5; + return noise; + + + } +// variables +// + + + +#define STANDARD +#ifdef PHYSICAL + #define IOR + #define SPECULAR +#endif +#ifdef IOR + float ior; +#endif +#ifdef SPECULAR + uniform float specularIntensity; + uniform vec3 specularColor; + #ifdef USE_SPECULARINTENSITYMAP + uniform sampler2D specularIntensityMap; + #endif + #ifdef USE_SPECULARCOLORMAP + uniform sampler2D specularColorMap; + #endif +#endif +#ifdef USE_CLEARCOAT + float clearcoat; + float clearcoatRoughness; +#endif +#ifdef USE_IRIDESCENCE + float iridescence; + float iridescenceIOR; + uniform float iridescenceThicknessMinimum; + float iridescenceThicknessMaximum; +#endif +#ifdef USE_SHEEN + uniform vec3 sheenColor; + uniform float sheenRoughness; + #ifdef USE_SHEENCOLORMAP + uniform sampler2D sheenColorMap; + #endif + #ifdef USE_SHEENROUGHNESSMAP + uniform sampler2D sheenRoughnessMap; + #endif +#endif +varying vec3 vViewPosition; + +#define PI 3.141592653589793 +#define PI2 6.283185307179586 +#define PI_HALF 1.5707963267948966 +#define RECIPROCAL_PI 0.3183098861837907 +#define RECIPROCAL_PI2 0.15915494309189535 +#define EPSILON 1e-6 +#ifndef saturate +// may have defined saturate() already +#define saturate( a ) clamp( a, 0.0, 1.0 ) +#endif +#define whiteComplement( a ) ( 1.0 - saturate( a ) ) +float pow2( const in float x ) { return x*x; } +vec3 pow2( const in vec3 x ) { return x*x; } +float pow3( const in float x ) { return x*x*x; } +float pow4( const in float x ) { float x2 = x*x; return x2*x2; } +float max3( const in vec3 v ) { return max( max( v.x, v.y ), v.z ); } +float average( const in vec3 v ) { return dot( v, vec3( 0.3333333 ) ); } +// expects values in the range of [0,1]x[0,1], returns values in the [0,1] range. +// do not collapse into a single function per: http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/ +highp float rand( const in vec2 uv ) { + const highp float a = 12.9898, b = 78.233, c = 43758.5453; + highp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI ); + return fract( sin( sn ) * c ); +} +#ifdef HIGH_PRECISION + float precisionSafeLength( vec3 v ) { return length( v ); } +#else + float precisionSafeLength( vec3 v ) { + float maxComponent = max3( abs( v ) ); + return length( v / maxComponent ) * maxComponent; + } +#endif +struct IncidentLight { + vec3 color; + vec3 direction; + bool visible; +}; +struct ReflectedLight { + vec3 directDiffuse; + vec3 directSpecular; + vec3 indirectDiffuse; + vec3 indirectSpecular; +}; +struct GeometricContext { + vec3 position; + vec3 normal; + vec3 viewDir; +#ifdef USE_CLEARCOAT + vec3 clearcoatNormal; +#endif +}; +vec3 transformDirection( in vec3 dir, in mat4 matrix ) { + return normalize( ( matrix * vec4( dir, 0.0 ) ).xyz ); +} +vec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) { + // dir can be either a direction vector or a normal vector + // upper-left 3x3 of matrix is assumed to be orthogonal + return normalize( ( vec4( dir, 0.0 ) * matrix ).xyz ); +} +mat3 transposeMat3( const in mat3 m ) { + mat3 tmp; + tmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x ); + tmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y ); + tmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z ); + return tmp; +} +float luminance( const in vec3 rgb ) { + // assumes rgb is in linear color space with sRGB primaries and D65 white point + const vec3 weights = vec3( 0.2126729, 0.7151522, 0.0721750 ); + return dot( weights, rgb ); +} +bool isPerspectiveMatrix( mat4 m ) { + return m[ 2 ][ 3 ] == - 1.0; +} +vec2 equirectUv( in vec3 dir ) { + // dir is assumed to be unit length + float u = atan( dir.z, dir.x ) * RECIPROCAL_PI2 + 0.5; + float v = asin( clamp( dir.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5; + return vec2( u, v ); +} + +vec3 packNormalToRGB( const in vec3 normal ) { + return normalize( normal ) * 0.5 + 0.5; +} +vec3 unpackRGBToNormal( const in vec3 rgb ) { + return 2.0 * rgb.xyz - 1.0; +} +const float PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1) +const float UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1) +const vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. ); +const vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. ); +const float ShiftRight8 = 1. / 256.; +vec4 packDepthToRGBA( const in float v ) { + vec4 r = vec4( fract( v * PackFactors ), v ); + r.yzw -= r.xyz * ShiftRight8; // tidy overflow + return r * PackUpscale; +} +float unpackRGBAToDepth( const in vec4 v ) { + return dot( v, UnpackFactors ); +} +vec2 packDepthToRG( in highp float v ) { + return packDepthToRGBA( v ).yx; +} +float unpackRGToDepth( const in highp vec2 v ) { + return unpackRGBAToDepth( vec4( v.xy, 0.0, 0.0 ) ); +} +vec4 pack2HalfToRGBA( vec2 v ) { + vec4 r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ) ); + return vec4( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w ); +} +vec2 unpackRGBATo2Half( vec4 v ) { + return vec2( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) ); +} +// NOTE: viewZ/eyeZ is < 0 when in front of the camera per OpenGL conventions +float viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) { + return ( viewZ + near ) / ( near - far ); +} +float orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) { + return linearClipZ * ( near - far ) - near; +} +// NOTE: https://twitter.com/gonnavis/status/1377183786949959682 +float viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) { + return ( ( near + viewZ ) * far ) / ( ( far - near ) * viewZ ); +} +float perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) { + return ( near * far ) / ( ( far - near ) * invClipZ - far ); +} + +#ifdef DITHERING + // based on https://www.shadertoy.com/view/MslGR8 + vec3 dithering( vec3 color ) { + //Calculate grid position + float grid_position = rand( gl_FragCoord.xy ); + //Shift the individual colors differently, thus making it even harder to see the dithering pattern + vec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 ); + //modify shift according to grid position. + dither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position ); + //shift the color by dither_shift + return color + dither_shift_RGB; + } +#endif + +#if defined( USE_COLOR_ALPHA ) + varying vec4 vColor; +#elif defined( USE_COLOR ) + varying vec3 vColor; +#endif + +#if ( defined( USE_UV ) && ! defined( UVS_VERTEX_ONLY ) ) + varying vec2 vUv; +#endif + +#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP ) + varying vec2 vUv2; +#endif + +#ifdef USE_MAP + uniform sampler2D map; +#endif + +#ifdef USE_ALPHAMAP + uniform sampler2D alphaMap; +#endif + +#ifdef USE_ALPHATEST + uniform float alphaTest; +#endif + +#ifdef USE_AOMAP + uniform sampler2D aoMap; + uniform float aoMapIntensity; +#endif + +#ifdef USE_LIGHTMAP + uniform sampler2D lightMap; + uniform float lightMapIntensity; +#endif + +#ifdef USE_EMISSIVEMAP + uniform sampler2D emissiveMap; +#endif + +vec3 BRDF_Lambert( const in vec3 diffuseColor ) { + return RECIPROCAL_PI * diffuseColor; +} // validated +vec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) { + // Original approximation by Christophe Schlick '94 + // float fresnel = pow( 1.0 - dotVH, 5.0 ); + // Optimized variant (presented by Epic at SIGGRAPH '13) + // https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf + float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH ); + return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel ); +} // validated +float F_Schlick( const in float f0, const in float f90, const in float dotVH ) { + // Original approximation by Christophe Schlick '94 + // float fresnel = pow( 1.0 - dotVH, 5.0 ); + // Optimized variant (presented by Epic at SIGGRAPH '13) + // https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf + float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH ); + return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel ); +} // validated +vec3 Schlick_to_F0( const in vec3 f, const in float f90, const in float dotVH ) { + float x = clamp( 1.0 - dotVH, 0.0, 1.0 ); + float x2 = x * x; + float x5 = clamp( x * x2 * x2, 0.0, 0.9999 ); + return ( f - vec3( f90 ) * x5 ) / ( 1.0 - x5 ); +} +// Moving Frostbite to Physically Based Rendering 3.0 - page 12, listing 2 +// https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf +float V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) { + float a2 = pow2( alpha ); + float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) ); + float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) ); + return 0.5 / max( gv + gl, EPSILON ); +} +// Microfacet Models for Refraction through Rough Surfaces - equation (33) +// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html +// alpha is \"roughness squared\" in Disney’s reparameterization +float D_GGX( const in float alpha, const in float dotNH ) { + float a2 = pow2( alpha ); + float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0; // avoid alpha = 0 with dotNH = 1 + return RECIPROCAL_PI * a2 / pow2( denom ); +} +// GGX Distribution, Schlick Fresnel, GGX_SmithCorrelated Visibility +vec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) { + float alpha = pow2( roughness ); // UE4's roughness + vec3 halfDir = normalize( lightDir + viewDir ); + float dotNL = saturate( dot( normal, lightDir ) ); + float dotNV = saturate( dot( normal, viewDir ) ); + float dotNH = saturate( dot( normal, halfDir ) ); + float dotVH = saturate( dot( viewDir, halfDir ) ); + vec3 F = F_Schlick( f0, f90, dotVH ); + float V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV ); + float D = D_GGX( alpha, dotNH ); + return F * ( V * D ); +} +#ifdef USE_IRIDESCENCE + vec3 BRDF_GGX_Iridescence( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float iridescence, const in vec3 iridescenceFresnel, const in float roughness ) { + float alpha = pow2( roughness ); // UE4's roughness + vec3 halfDir = normalize( lightDir + viewDir ); + float dotNL = saturate( dot( normal, lightDir ) ); + float dotNV = saturate( dot( normal, viewDir ) ); + float dotNH = saturate( dot( normal, halfDir ) ); + float dotVH = saturate( dot( viewDir, halfDir ) ); + vec3 F = mix( F_Schlick( f0, f90, dotVH ), iridescenceFresnel, iridescence ); + float V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV ); + float D = D_GGX( alpha, dotNH ); + return F * ( V * D ); + } +#endif +// Rect Area Light +// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines +// by Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt +// code: https://github.com/selfshadow/ltc_code/ +vec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) { + const float LUT_SIZE = 64.0; + const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE; + const float LUT_BIAS = 0.5 / LUT_SIZE; + float dotNV = saturate( dot( N, V ) ); + // texture parameterized by sqrt( GGX alpha ) and sqrt( 1 - cos( theta ) ) + vec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) ); + uv = uv * LUT_SCALE + LUT_BIAS; + return uv; +} +float LTC_ClippedSphereFormFactor( const in vec3 f ) { + // Real-Time Area Lighting: a Journey from Research to Production (p.102) + // An approximation of the form factor of a horizon-clipped rectangle. + float l = length( f ); + return max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 ); +} +vec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) { + float x = dot( v1, v2 ); + float y = abs( x ); + // rational polynomial approximation to theta / sin( theta ) / 2PI + float a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y; + float b = 3.4175940 + ( 4.1616724 + y ) * y; + float v = a / b; + float theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v; + return cross( v1, v2 ) * theta_sintheta; +} +vec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) { + // bail if point is on back side of plane of light + // assumes ccw winding order of light vertices + vec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ]; + vec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ]; + vec3 lightNormal = cross( v1, v2 ); + if( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 ); + // construct orthonormal basis around N + vec3 T1, T2; + T1 = normalize( V - N * dot( V, N ) ); + T2 = - cross( N, T1 ); // negated from paper; possibly due to a different handedness of world coordinate system + // compute transform + mat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) ); + // transform rect + vec3 coords[ 4 ]; + coords[ 0 ] = mat * ( rectCoords[ 0 ] - P ); + coords[ 1 ] = mat * ( rectCoords[ 1 ] - P ); + coords[ 2 ] = mat * ( rectCoords[ 2 ] - P ); + coords[ 3 ] = mat * ( rectCoords[ 3 ] - P ); + // project rect onto sphere + coords[ 0 ] = normalize( coords[ 0 ] ); + coords[ 1 ] = normalize( coords[ 1 ] ); + coords[ 2 ] = normalize( coords[ 2 ] ); + coords[ 3 ] = normalize( coords[ 3 ] ); + // calculate vector form factor + vec3 vectorFormFactor = vec3( 0.0 ); + vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] ); + vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] ); + vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] ); + vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] ); + // adjust for horizon clipping + float result = LTC_ClippedSphereFormFactor( vectorFormFactor ); +/* + // alternate method of adjusting for horizon clipping (see referece) + // refactoring required + float len = length( vectorFormFactor ); + float z = vectorFormFactor.z / len; + const float LUT_SIZE = 64.0; + const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE; + const float LUT_BIAS = 0.5 / LUT_SIZE; + // tabulated horizon-clipped sphere, apparently... + vec2 uv = vec2( z * 0.5 + 0.5, len ); + uv = uv * LUT_SCALE + LUT_BIAS; + float scale = texture2D( ltc_2, uv ).w; + float result = len * scale; +*/ + return vec3( result ); +} +// End Rect Area Light + +float G_BlinnPhong_Implicit( /* const in float dotNL, const in float dotNV */ ) { + // geometry term is (n dot l)(n dot v) / 4(n dot l)(n dot v) + return 0.25; +} +float D_BlinnPhong( const in float shininess, const in float dotNH ) { + return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess ); +} +vec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 specularColor, const in float shininess ) { + vec3 halfDir = normalize( lightDir + viewDir ); + float dotNH = saturate( dot( normal, halfDir ) ); + float dotVH = saturate( dot( viewDir, halfDir ) ); + vec3 F = F_Schlick( specularColor, 1.0, dotVH ); + float G = G_BlinnPhong_Implicit( /* dotNL, dotNV */ ); + float D = D_BlinnPhong( shininess, dotNH ); + return F * ( G * D ); +} // validated +#if defined( USE_SHEEN ) +// https://github.com/google/filament/blob/master/shaders/src/brdf.fs +float D_Charlie( float roughness, float dotNH ) { + float alpha = pow2( roughness ); + // Estevez and Kulla 2017, \"Production Friendly Microfacet Sheen BRDF\" + float invAlpha = 1.0 / alpha; + float cos2h = dotNH * dotNH; + float sin2h = max( 1.0 - cos2h, 0.0078125 ); // 2^(-14/2), so sin2h^2 > 0 in fp16 + return ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI ); +} +// https://github.com/google/filament/blob/master/shaders/src/brdf.fs +float V_Neubelt( float dotNV, float dotNL ) { + // Neubelt and Pettineo 2013, \"Crafting a Next-gen Material Pipeline for The Order: 1886\" + return saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) ); +} +vec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) { + vec3 halfDir = normalize( lightDir + viewDir ); + float dotNL = saturate( dot( normal, lightDir ) ); + float dotNV = saturate( dot( normal, viewDir ) ); + float dotNH = saturate( dot( normal, halfDir ) ); + float D = D_Charlie( sheenRoughness, dotNH ); + float V = V_Neubelt( dotNV, dotNL ); + return sheenColor * ( D * V ); +} +#endif + +#ifdef USE_IRIDESCENCE + // XYZ to linear-sRGB color space + const mat3 XYZ_TO_REC709 = mat3( + 3.2404542, -0.9692660, 0.0556434, + -1.5371385, 1.8760108, -0.2040259, + -0.4985314, 0.0415560, 1.0572252 + ); + // Assume air interface for top + // Note: We don't handle the case fresnel0 == 1 + vec3 Fresnel0ToIor( vec3 fresnel0 ) { + vec3 sqrtF0 = sqrt( fresnel0 ); + return ( vec3( 1.0 ) + sqrtF0 ) / ( vec3( 1.0 ) - sqrtF0 ); + } + // Conversion FO/IOR + vec3 IorToFresnel0( vec3 transmittedIor, float incidentIor ) { + return pow2( ( transmittedIor - vec3( incidentIor ) ) / ( transmittedIor + vec3( incidentIor ) ) ); + } + // ior is a value between 1.0 and 3.0. 1.0 is air interface + float IorToFresnel0( float transmittedIor, float incidentIor ) { + return pow2( ( transmittedIor - incidentIor ) / ( transmittedIor + incidentIor )); + } + // Fresnel equations for dielectric/dielectric interfaces. + // Ref: https://belcour.github.io/blog/research/2017/05/01/brdf-thin-film.html + // Evaluation XYZ sensitivity curves in Fourier space + vec3 evalSensitivity( float OPD, vec3 shift ) { + float phase = 2.0 * PI * OPD * 1.0e-9; + vec3 val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 ); + vec3 pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 ); + vec3 var = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 ); + vec3 xyz = val * sqrt( 2.0 * PI * var ) * cos( pos * phase + shift ) * exp( - pow2( phase ) * var ); + xyz.x += 9.7470e-14 * sqrt( 2.0 * PI * 4.5282e+09 ) * cos( 2.2399e+06 * phase + shift[ 0 ] ) * exp( - 4.5282e+09 * pow2( phase ) ); + xyz /= 1.0685e-7; + vec3 rgb = XYZ_TO_REC709 * xyz; + return rgb; + } + vec3 evalIridescence( float outsideIOR, float eta2, float cosTheta1, float thinFilmThickness, vec3 baseF0 ) { + vec3 I; + // Force iridescenceIOR -> outsideIOR when thinFilmThickness -> 0.0 + float iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) ); + // Evaluate the cosTheta on the base layer (Snell law) + float sinTheta2Sq = pow2( outsideIOR / iridescenceIOR ) * ( 1.0 - pow2( cosTheta1 ) ); + // Handle TIR: + float cosTheta2Sq = 1.0 - sinTheta2Sq; + if ( cosTheta2Sq < 0.0 ) { + return vec3( 1.0 ); + } + float cosTheta2 = sqrt( cosTheta2Sq ); + // First interface + float R0 = IorToFresnel0( iridescenceIOR, outsideIOR ); + float R12 = F_Schlick( R0, 1.0, cosTheta1 ); + float R21 = R12; + float T121 = 1.0 - R12; + float phi12 = 0.0; + if ( iridescenceIOR < outsideIOR ) phi12 = PI; + float phi21 = PI - phi12; + // Second interface + vec3 baseIOR = Fresnel0ToIor( clamp( baseF0, 0.0, 0.9999 ) ); // guard against 1.0 + vec3 R1 = IorToFresnel0( baseIOR, iridescenceIOR ); + vec3 R23 = F_Schlick( R1, 1.0, cosTheta2 ); + vec3 phi23 = vec3( 0.0 ); + if ( baseIOR[ 0 ] < iridescenceIOR ) phi23[ 0 ] = PI; + if ( baseIOR[ 1 ] < iridescenceIOR ) phi23[ 1 ] = PI; + if ( baseIOR[ 2 ] < iridescenceIOR ) phi23[ 2 ] = PI; + // Phase shift + float OPD = 2.0 * iridescenceIOR * thinFilmThickness * cosTheta2; + vec3 phi = vec3( phi21 ) + phi23; + // Compound terms + vec3 R123 = clamp( R12 * R23, 1e-5, 0.9999 ); + vec3 r123 = sqrt( R123 ); + vec3 Rs = pow2( T121 ) * R23 / ( vec3( 1.0 ) - R123 ); + // Reflectance term for m = 0 (DC term amplitude) + vec3 C0 = R12 + Rs; + I = C0; + // Reflectance term for m > 0 (pairs of diracs) + vec3 Cm = Rs - T121; + for ( int m = 1; m <= 2; ++ m ) { + Cm *= r123; + vec3 Sm = 2.0 * evalSensitivity( float( m ) * OPD, float( m ) * phi ); + I += Cm * Sm; + } + // Since out of gamut colors might be produced, negative color values are clamped to 0. + return max( I, vec3( 0.0 ) ); + } +#endif + +#ifdef ENVMAP_TYPE_CUBE_UV + #define cubeUV_minMipLevel 4.0 + #define cubeUV_minTileSize 16.0 + // These shader functions convert between the UV coordinates of a single face of + // a cubemap, the 0-5 integer index of a cube face, and the direction vector for + // sampling a textureCube (not generally normalized ). + float getFace( vec3 direction ) { + vec3 absDirection = abs( direction ); + float face = - 1.0; + if ( absDirection.x > absDirection.z ) { + if ( absDirection.x > absDirection.y ) + face = direction.x > 0.0 ? 0.0 : 3.0; + else + face = direction.y > 0.0 ? 1.0 : 4.0; + } else { + if ( absDirection.z > absDirection.y ) + face = direction.z > 0.0 ? 2.0 : 5.0; + else + face = direction.y > 0.0 ? 1.0 : 4.0; + } + return face; + } + // RH coordinate system; PMREM face-indexing convention + vec2 getUV( vec3 direction, float face ) { + vec2 uv; + if ( face == 0.0 ) { + uv = vec2( direction.z, direction.y ) / abs( direction.x ); // pos x + } else if ( face == 1.0 ) { + uv = vec2( - direction.x, - direction.z ) / abs( direction.y ); // pos y + } else if ( face == 2.0 ) { + uv = vec2( - direction.x, direction.y ) / abs( direction.z ); // pos z + } else if ( face == 3.0 ) { + uv = vec2( - direction.z, direction.y ) / abs( direction.x ); // neg x + } else if ( face == 4.0 ) { + uv = vec2( - direction.x, direction.z ) / abs( direction.y ); // neg y + } else { + uv = vec2( direction.x, direction.y ) / abs( direction.z ); // neg z + } + return 0.5 * ( uv + 1.0 ); + } + vec3 bilinearCubeUV( sampler2D envMap, vec3 direction, float mipInt ) { + float face = getFace( direction ); + float filterInt = max( cubeUV_minMipLevel - mipInt, 0.0 ); + mipInt = max( mipInt, cubeUV_minMipLevel ); + float faceSize = exp2( mipInt ); + highp vec2 uv = getUV( direction, face ) * ( faceSize - 2.0 ) + 1.0; // #25071 + if ( face > 2.0 ) { + uv.y += faceSize; + face -= 3.0; + } + uv.x += face * faceSize; + uv.x += filterInt * 3.0 * cubeUV_minTileSize; + uv.y += 4.0 * ( exp2( CUBEUV_MAX_MIP ) - faceSize ); + uv.x *= CUBEUV_TEXEL_WIDTH; + uv.y *= CUBEUV_TEXEL_HEIGHT; + #ifdef texture2DGradEXT + return texture2DGradEXT( envMap, uv, vec2( 0.0 ), vec2( 0.0 ) ).rgb; // disable anisotropic filtering + #else + return texture2D( envMap, uv ).rgb; + #endif + } + // These defines must match with PMREMGenerator + #define cubeUV_r0 1.0 + #define cubeUV_v0 0.339 + #define cubeUV_m0 - 2.0 + #define cubeUV_r1 0.8 + #define cubeUV_v1 0.276 + #define cubeUV_m1 - 1.0 + #define cubeUV_r4 0.4 + #define cubeUV_v4 0.046 + #define cubeUV_m4 2.0 + #define cubeUV_r5 0.305 + #define cubeUV_v5 0.016 + #define cubeUV_m5 3.0 + #define cubeUV_r6 0.21 + #define cubeUV_v6 0.0038 + #define cubeUV_m6 4.0 + float roughnessToMip( float roughness ) { + float mip = 0.0; + if ( roughness >= cubeUV_r1 ) { + mip = ( cubeUV_r0 - roughness ) * ( cubeUV_m1 - cubeUV_m0 ) / ( cubeUV_r0 - cubeUV_r1 ) + cubeUV_m0; + } else if ( roughness >= cubeUV_r4 ) { + mip = ( cubeUV_r1 - roughness ) * ( cubeUV_m4 - cubeUV_m1 ) / ( cubeUV_r1 - cubeUV_r4 ) + cubeUV_m1; + } else if ( roughness >= cubeUV_r5 ) { + mip = ( cubeUV_r4 - roughness ) * ( cubeUV_m5 - cubeUV_m4 ) / ( cubeUV_r4 - cubeUV_r5 ) + cubeUV_m4; + } else if ( roughness >= cubeUV_r6 ) { + mip = ( cubeUV_r5 - roughness ) * ( cubeUV_m6 - cubeUV_m5 ) / ( cubeUV_r5 - cubeUV_r6 ) + cubeUV_m5; + } else { + mip = - 2.0 * log2( 1.16 * roughness ); // 1.16 = 1.79^0.25 + } + return mip; + } + vec4 textureCubeUV( sampler2D envMap, vec3 sampleDir, float roughness ) { + float mip = clamp( roughnessToMip( roughness ), cubeUV_m0, CUBEUV_MAX_MIP ); + float mipF = fract( mip ); + float mipInt = floor( mip ); + vec3 color0 = bilinearCubeUV( envMap, sampleDir, mipInt ); + if ( mipF == 0.0 ) { + return vec4( color0, 1.0 ); + } else { + vec3 color1 = bilinearCubeUV( envMap, sampleDir, mipInt + 1.0 ); + return vec4( mix( color0, color1, mipF ), 1.0 ); + } + } +#endif + +#ifdef USE_ENVMAP + uniform float envMapIntensity; + uniform float flipEnvMap; + #ifdef ENVMAP_TYPE_CUBE + uniform samplerCube envMap; + #else + uniform sampler2D envMap; + #endif + +#endif + +#if defined( USE_ENVMAP ) + vec3 getIBLIrradiance( const in vec3 normal ) { + #if defined( ENVMAP_TYPE_CUBE_UV ) + vec3 worldNormal = inverseTransformDirection( normal, viewMatrix ); + vec4 envMapColor = textureCubeUV( envMap, worldNormal, 1.0 ); + return PI * envMapColor.rgb * envMapIntensity; + #else + return vec3( 0.0 ); + #endif + } + vec3 getIBLRadiance( const in vec3 viewDir, const in vec3 normal, const in float roughness ) { + #if defined( ENVMAP_TYPE_CUBE_UV ) + vec3 reflectVec = reflect( - viewDir, normal ); + // Mixing the reflection with the normal is more accurate and keeps rough objects from gathering light from behind their tangent plane. + reflectVec = normalize( mix( reflectVec, normal, roughness * roughness) ); + reflectVec = inverseTransformDirection( reflectVec, viewMatrix ); + vec4 envMapColor = textureCubeUV( envMap, reflectVec, roughness ); + return envMapColor.rgb * envMapIntensity; + #else + return vec3( 0.0 ); + #endif + } +#endif + +#ifdef USE_FOG + uniform vec3 fogColor; + varying float vFogDepth; + #ifdef FOG_EXP2 + uniform float fogDensity; + #else + uniform float fogNear; + uniform float fogFar; + #endif +#endif + +uniform bool receiveShadow; +uniform vec3 ambientLightColor; +uniform vec3 lightProbe[ 9 ]; +// get the irradiance (radiance convolved with cosine lobe) at the point 'normal' on the unit sphere +// source: https://graphics.stanford.edu/papers/envmap/envmap.pdf +vec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) { + // normal is assumed to have unit length + float x = normal.x, y = normal.y, z = normal.z; + // band 0 + vec3 result = shCoefficients[ 0 ] * 0.886227; + // band 1 + result += shCoefficients[ 1 ] * 2.0 * 0.511664 * y; + result += shCoefficients[ 2 ] * 2.0 * 0.511664 * z; + result += shCoefficients[ 3 ] * 2.0 * 0.511664 * x; + // band 2 + result += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y; + result += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z; + result += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 ); + result += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z; + result += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y ); + return result; +} +vec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in vec3 normal ) { + vec3 worldNormal = inverseTransformDirection( normal, viewMatrix ); + vec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe ); + return irradiance; +} +vec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) { + vec3 irradiance = ambientLightColor; + return irradiance; +} +float getDistanceAttenuation( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) { + #if defined ( PHYSICALLY_CORRECT_LIGHTS ) + // based upon Frostbite 3 Moving to Physically-based Rendering + // page 32, equation 26: E[window1] + // https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf + float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 ); + if ( cutoffDistance > 0.0 ) { + distanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) ); + } + return distanceFalloff; + #else + if ( cutoffDistance > 0.0 && decayExponent > 0.0 ) { + return pow( saturate( - lightDistance / cutoffDistance + 1.0 ), decayExponent ); + } + return 1.0; + #endif +} +float getSpotAttenuation( const in float coneCosine, const in float penumbraCosine, const in float angleCosine ) { + return smoothstep( coneCosine, penumbraCosine, angleCosine ); +} +#if NUM_DIR_LIGHTS > 0 + struct DirectionalLight { + vec3 direction; + vec3 color; + }; + uniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ]; + void getDirectionalLightInfo( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight light ) { + light.color = directionalLight.color; + light.direction = directionalLight.direction; + light.visible = true; + } +#endif + +#if NUM_POINT_LIGHTS > 0 + struct PointLight { + vec3 position; + vec3 color; + float distance; + float decay; + }; + uniform PointLight pointLights[ NUM_POINT_LIGHTS ]; + // light is an out parameter as having it as a return value caused compiler errors on some devices + void getPointLightInfo( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight light ) { + vec3 lVector = pointLight.position - geometry.position; + light.direction = normalize( lVector ); + float lightDistance = length( lVector ); + light.color = pointLight.color; + light.color *= getDistanceAttenuation( lightDistance, pointLight.distance, pointLight.decay ); + light.visible = ( light.color != vec3( 0.0 ) ); + } +#endif + +#if NUM_SPOT_LIGHTS > 0 + struct SpotLight { + vec3 position; + vec3 direction; + vec3 color; + float distance; + float decay; + float coneCos; + float penumbraCos; + }; + uniform SpotLight spotLights[ NUM_SPOT_LIGHTS ]; + // light is an out parameter as having it as a return value caused compiler errors on some devices + void getSpotLightInfo( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight light ) { + vec3 lVector = spotLight.position - geometry.position; + light.direction = normalize( lVector ); + float angleCos = dot( light.direction, spotLight.direction ); + float spotAttenuation = getSpotAttenuation( spotLight.coneCos, spotLight.penumbraCos, angleCos ); + if ( spotAttenuation > 0.0 ) { + float lightDistance = length( lVector ); + light.color = spotLight.color * spotAttenuation; + light.color *= getDistanceAttenuation( lightDistance, spotLight.distance, spotLight.decay ); + light.visible = ( light.color != vec3( 0.0 ) ); + } else { + light.color = vec3( 0.0 ); + light.visible = false; + } + } +#endif + +#if NUM_RECT_AREA_LIGHTS > 0 + struct RectAreaLight { + vec3 color; + vec3 position; + vec3 halfWidth; + vec3 halfHeight; + }; + // Pre-computed values of LinearTransformedCosine approximation of BRDF + // BRDF approximation Texture is 64x64 + uniform sampler2D ltc_1; // RGBA Float + uniform sampler2D ltc_2; // RGBA Float + uniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ]; +#endif + +#if NUM_HEMI_LIGHTS > 0 + struct HemisphereLight { + vec3 direction; + vec3 skyColor; + vec3 groundColor; + }; + uniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ]; + vec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in vec3 normal ) { + float dotNL = dot( normal, hemiLight.direction ); + float hemiDiffuseWeight = 0.5 * dotNL + 0.5; + vec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight ); + return irradiance; + } +#endif + +#ifndef FLAT_SHADED + varying vec3 vNormal; + #ifdef USE_TANGENT + varying vec3 vTangent; + varying vec3 vBitangent; + #endif +#endif + +struct PhysicalMaterial { + vec3 diffuseColor; + float roughness; + vec3 specularColor; + float specularF90; + #ifdef USE_CLEARCOAT + float clearcoat; + float clearcoatRoughness; + vec3 clearcoatF0; + float clearcoatF90; + #endif + #ifdef USE_IRIDESCENCE + float iridescence; + float iridescenceIOR; + float iridescenceThickness; + vec3 iridescenceFresnel; + vec3 iridescenceF0; + #endif + #ifdef USE_SHEEN + vec3 sheenColor; + float sheenRoughness; + #endif + #ifdef IOR + float ior; + #endif + #ifdef USE_TRANSMISSION + float transmission; + float transmissionAlpha; + float thickness; + float attenuationDistance; + vec3 attenuationColor; + #endif +}; +// temporary +vec3 clearcoatSpecular = vec3( 0.0 ); +vec3 sheenSpecular = vec3( 0.0 ); +// This is a curve-fit approxmation to the \"Charlie sheen\" BRDF integrated over the hemisphere from +// Estevez and Kulla 2017, \"Production Friendly Microfacet Sheen BRDF\". The analysis can be found +// in the Sheen section of https://drive.google.com/file/d/1T0D1VSyR4AllqIJTQAraEIzjlb5h4FKH/view?usp=sharing +float IBLSheenBRDF( const in vec3 normal, const in vec3 viewDir, const in float roughness ) { + float dotNV = saturate( dot( normal, viewDir ) ); + float r2 = roughness * roughness; + float a = roughness < 0.25 ? -339.2 * r2 + 161.4 * roughness - 25.9 : -8.48 * r2 + 14.3 * roughness - 9.95; + float b = roughness < 0.25 ? 44.0 * r2 - 23.7 * roughness + 3.26 : 1.97 * r2 - 3.27 * roughness + 0.72; + float DG = exp( a * dotNV + b ) + ( roughness < 0.25 ? 0.0 : 0.1 * ( roughness - 0.25 ) ); + return saturate( DG * RECIPROCAL_PI ); +} +// Analytical approximation of the DFG LUT, one half of the +// split-sum approximation used in indirect specular lighting. +// via 'environmentBRDF' from \"Physically Based Shading on Mobile\" +// https://www.unrealengine.com/blog/physically-based-shading-on-mobile +vec2 DFGApprox( const in vec3 normal, const in vec3 viewDir, const in float roughness ) { + float dotNV = saturate( dot( normal, viewDir ) ); + const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 ); + const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 ); + vec4 r = roughness * c0 + c1; + float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y; + vec2 fab = vec2( - 1.04, 1.04 ) * a004 + r.zw; + return fab; +} +vec3 EnvironmentBRDF( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness ) { + vec2 fab = DFGApprox( normal, viewDir, roughness ); + return specularColor * fab.x + specularF90 * fab.y; +} +// Fdez-Agüera's \"Multiple-Scattering Microfacet Model for Real-Time Image Based Lighting\" +// Approximates multiscattering in order to preserve energy. +// http://www.jcgt.org/published/0008/01/03/ +#ifdef USE_IRIDESCENCE +void computeMultiscatteringIridescence( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float iridescence, const in vec3 iridescenceF0, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) { +#else +void computeMultiscattering( const in vec3 normal, const in vec3 viewDir, const in vec3 specularColor, const in float specularF90, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) { +#endif + vec2 fab = DFGApprox( normal, viewDir, roughness ); + #ifdef USE_IRIDESCENCE + vec3 Fr = mix( specularColor, iridescenceF0, iridescence ); + #else + vec3 Fr = specularColor; + #endif + vec3 FssEss = Fr * fab.x + specularF90 * fab.y; + float Ess = fab.x + fab.y; + float Ems = 1.0 - Ess; + vec3 Favg = Fr + ( 1.0 - Fr ) * 0.047619; // 1/21 + vec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg ); + singleScatter += FssEss; + multiScatter += Fms * Ems; +} +#if NUM_RECT_AREA_LIGHTS > 0 + void RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) { + vec3 normal = geometry.normal; + vec3 viewDir = geometry.viewDir; + vec3 position = geometry.position; + vec3 lightPos = rectAreaLight.position; + vec3 halfWidth = rectAreaLight.halfWidth; + vec3 halfHeight = rectAreaLight.halfHeight; + vec3 lightColor = rectAreaLight.color; + float roughness = material.roughness; + vec3 rectCoords[ 4 ]; + rectCoords[ 0 ] = lightPos + halfWidth - halfHeight; // counterclockwise; light shines in local neg z direction + rectCoords[ 1 ] = lightPos - halfWidth - halfHeight; + rectCoords[ 2 ] = lightPos - halfWidth + halfHeight; + rectCoords[ 3 ] = lightPos + halfWidth + halfHeight; + vec2 uv = LTC_Uv( normal, viewDir, roughness ); + vec4 t1 = texture2D( ltc_1, uv ); + vec4 t2 = texture2D( ltc_2, uv ); + mat3 mInv = mat3( + vec3( t1.x, 0, t1.y ), + vec3( 0, 1, 0 ), + vec3( t1.z, 0, t1.w ) + ); + // LTC Fresnel Approximation by Stephen Hill + // http://blog.selfshadow.com/publications/s2016-advances/s2016_ltc_fresnel.pdf + vec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y ); + reflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords ); + reflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords ); + } +#endif +void RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) { + float dotNL = saturate( dot( geometry.normal, directLight.direction ) ); + vec3 irradiance = dotNL * directLight.color; + #ifdef USE_CLEARCOAT + float dotNLcc = saturate( dot( geometry.clearcoatNormal, directLight.direction ) ); + vec3 ccIrradiance = dotNLcc * directLight.color; + clearcoatSpecular += ccIrradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.clearcoatNormal, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness ); + #endif + #ifdef USE_SHEEN + sheenSpecular += irradiance * BRDF_Sheen( directLight.direction, geometry.viewDir, geometry.normal, material.sheenColor, material.sheenRoughness ); + #endif + #ifdef USE_IRIDESCENCE + reflectedLight.directSpecular += irradiance * BRDF_GGX_Iridescence( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.iridescence, material.iridescenceFresnel, material.roughness ); + #else + reflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometry.viewDir, geometry.normal, material.specularColor, material.specularF90, material.roughness ); + #endif + reflectedLight.directDiffuse += irradiance * BRDF_Lambert( material.diffuseColor ); +} +void RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) { + reflectedLight.indirectDiffuse += irradiance * BRDF_Lambert( material.diffuseColor ); +} +void RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearcoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) { + #ifdef USE_CLEARCOAT + clearcoatSpecular += clearcoatRadiance * EnvironmentBRDF( geometry.clearcoatNormal, geometry.viewDir, material.clearcoatF0, material.clearcoatF90, material.clearcoatRoughness ); + #endif + #ifdef USE_SHEEN + sheenSpecular += irradiance * material.sheenColor * IBLSheenBRDF( geometry.normal, geometry.viewDir, material.sheenRoughness ); + #endif + // Both indirect specular and indirect diffuse light accumulate here + vec3 singleScattering = vec3( 0.0 ); + vec3 multiScattering = vec3( 0.0 ); + vec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI; + #ifdef USE_IRIDESCENCE + computeMultiscatteringIridescence( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.iridescence, material.iridescenceFresnel, material.roughness, singleScattering, multiScattering ); + #else + computeMultiscattering( geometry.normal, geometry.viewDir, material.specularColor, material.specularF90, material.roughness, singleScattering, multiScattering ); + #endif + vec3 totalScattering = singleScattering + multiScattering; + vec3 diffuse = material.diffuseColor * ( 1.0 - max( max( totalScattering.r, totalScattering.g ), totalScattering.b ) ); + reflectedLight.indirectSpecular += radiance * singleScattering; + reflectedLight.indirectSpecular += multiScattering * cosineWeightedIrradiance; + reflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance; +} +#define RE_Direct RE_Direct_Physical +#define RE_Direct_RectArea RE_Direct_RectArea_Physical +#define RE_IndirectDiffuse RE_IndirectDiffuse_Physical +#define RE_IndirectSpecular RE_IndirectSpecular_Physical +// ref: https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf +float computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) { + return saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion ); +} + +#ifdef USE_TRANSMISSION + // Transmission code is based on glTF-Sampler-Viewer + // https://github.com/KhronosGroup/glTF-Sample-Viewer + float transmission; + uniform float thickness; + uniform float attenuationDistance; + uniform vec3 attenuationColor; + #ifdef USE_TRANSMISSIONMAP + uniform sampler2D transmissionMap; + #endif + #ifdef USE_THICKNESSMAP + uniform sampler2D thicknessMap; + #endif + uniform vec2 transmissionSamplerSize; + uniform sampler2D transmissionSamplerMap; + uniform mat4 modelMatrix; + uniform mat4 projectionMatrix; + varying vec3 vWorldPosition; + vec3 getVolumeTransmissionRay( const in vec3 n, const in vec3 v, const in float thickness, const in float ior, const in mat4 modelMatrix ) { + // Direction of refracted light. + vec3 refractionVector = refract( - v, normalize( n ), 1.0 / ior ); + // Compute rotation-independant scaling of the model matrix. + vec3 modelScale; + modelScale.x = length( vec3( modelMatrix[ 0 ].xyz ) ); + modelScale.y = length( vec3( modelMatrix[ 1 ].xyz ) ); + modelScale.z = length( vec3( modelMatrix[ 2 ].xyz ) ); + // The thickness is specified in local space. + return normalize( refractionVector ) * thickness * modelScale; + } + float applyIorToRoughness( const in float roughness, const in float ior ) { + // Scale roughness with IOR so that an IOR of 1.0 results in no microfacet refraction and + // an IOR of 1.5 results in the default amount of microfacet refraction. + return roughness * clamp( ior * 2.0 - 2.0, 0.0, 1.0 ); + } + vec4 getTransmissionSample( const in vec2 fragCoord, const in float roughness, const in float ior ) { + float framebufferLod = log2( transmissionSamplerSize.x ) * applyIorToRoughness( roughness, ior ); + #ifdef texture2DLodEXT + return texture2DLodEXT( transmissionSamplerMap, fragCoord.xy, framebufferLod ); + #else + return texture2D( transmissionSamplerMap, fragCoord.xy, framebufferLod ); + #endif + } + vec3 applyVolumeAttenuation( const in vec3 radiance, const in float transmissionDistance, const in vec3 attenuationColor, const in float attenuationDistance ) { + if ( isinf( attenuationDistance ) ) { + // Attenuation distance is +∞, i.e. the transmitted color is not attenuated at all. + return radiance; + } else { + // Compute light attenuation using Beer's law. + vec3 attenuationCoefficient = -log( attenuationColor ) / attenuationDistance; + vec3 transmittance = exp( - attenuationCoefficient * transmissionDistance ); // Beer's law + return transmittance * radiance; + } + } + vec4 getIBLVolumeRefraction( const in vec3 n, const in vec3 v, const in float roughness, const in vec3 diffuseColor, + const in vec3 specularColor, const in float specularF90, const in vec3 position, const in mat4 modelMatrix, + const in mat4 viewMatrix, const in mat4 projMatrix, const in float ior, const in float thickness, + const in vec3 attenuationColor, const in float attenuationDistance ) { + vec3 transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix ); + vec3 refractedRayExit = position + transmissionRay; + // Project refracted vector on the framebuffer, while mapping to normalized device coordinates. + vec4 ndcPos = projMatrix * viewMatrix * vec4( refractedRayExit, 1.0 ); + vec2 refractionCoords = ndcPos.xy / ndcPos.w; + refractionCoords += 1.0; + refractionCoords /= 2.0; + // Sample framebuffer to get pixel the refracted ray hits. + vec4 transmittedLight = getTransmissionSample( refractionCoords, roughness, ior ); + vec3 attenuatedColor = applyVolumeAttenuation( transmittedLight.rgb, length( transmissionRay ), attenuationColor, attenuationDistance ); + // Get the specular component. + vec3 F = EnvironmentBRDF( n, v, specularColor, specularF90, roughness ); + return vec4( ( 1.0 - F ) * attenuatedColor * diffuseColor, transmittedLight.a ); + } +#endif + +#if NUM_SPOT_LIGHT_COORDS > 0 + varying vec4 vSpotLightCoord[ NUM_SPOT_LIGHT_COORDS ]; +#endif +#if NUM_SPOT_LIGHT_MAPS > 0 + uniform sampler2D spotLightMap[ NUM_SPOT_LIGHT_MAPS ]; +#endif +#ifdef USE_SHADOWMAP + #if NUM_DIR_LIGHT_SHADOWS > 0 + uniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ]; + varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ]; + struct DirectionalLightShadow { + float shadowBias; + float shadowNormalBias; + float shadowRadius; + vec2 shadowMapSize; + }; + uniform DirectionalLightShadow directionalLightShadows[ NUM_DIR_LIGHT_SHADOWS ]; + #endif + #if NUM_SPOT_LIGHT_SHADOWS > 0 + uniform sampler2D spotShadowMap[ NUM_SPOT_LIGHT_SHADOWS ]; + struct SpotLightShadow { + float shadowBias; + float shadowNormalBias; + float shadowRadius; + vec2 shadowMapSize; + }; + uniform SpotLightShadow spotLightShadows[ NUM_SPOT_LIGHT_SHADOWS ]; + #endif + #if NUM_POINT_LIGHT_SHADOWS > 0 + uniform sampler2D pointShadowMap[ NUM_POINT_LIGHT_SHADOWS ]; + varying vec4 vPointShadowCoord[ NUM_POINT_LIGHT_SHADOWS ]; + struct PointLightShadow { + float shadowBias; + float shadowNormalBias; + float shadowRadius; + vec2 shadowMapSize; + float shadowCameraNear; + float shadowCameraFar; + }; + uniform PointLightShadow pointLightShadows[ NUM_POINT_LIGHT_SHADOWS ]; + #endif + /* + #if NUM_RECT_AREA_LIGHTS > 0 + // TODO (abelnation): create uniforms for area light shadows + #endif + */ + float texture2DCompare( sampler2D depths, vec2 uv, float compare ) { + return step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) ); + } + vec2 texture2DDistribution( sampler2D shadow, vec2 uv ) { + return unpackRGBATo2Half( texture2D( shadow, uv ) ); + } + float VSMShadow (sampler2D shadow, vec2 uv, float compare ){ + float occlusion = 1.0; + vec2 distribution = texture2DDistribution( shadow, uv ); + float hard_shadow = step( compare , distribution.x ); // Hard Shadow + if (hard_shadow != 1.0 ) { + float distance = compare - distribution.x ; + float variance = max( 0.00000, distribution.y * distribution.y ); + float softness_probability = variance / (variance + distance * distance ); // Chebeyshevs inequality + softness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 ); // 0.3 reduces light bleed + occlusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 ); + } + return occlusion; + } + float getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) { + float shadow = 1.0; + shadowCoord.xyz /= shadowCoord.w; + shadowCoord.z += shadowBias; + bool inFrustum = shadowCoord.x >= 0.0 && shadowCoord.x <= 1.0 && shadowCoord.y >= 0.0 && shadowCoord.y <= 1.0; + bool frustumTest = inFrustum && shadowCoord.z <= 1.0; + if ( frustumTest ) { + #if defined( SHADOWMAP_TYPE_PCF ) + vec2 texelSize = vec2( 1.0 ) / shadowMapSize; + float dx0 = - texelSize.x * shadowRadius; + float dy0 = - texelSize.y * shadowRadius; + float dx1 = + texelSize.x * shadowRadius; + float dy1 = + texelSize.y * shadowRadius; + float dx2 = dx0 / 2.0; + float dy2 = dy0 / 2.0; + float dx3 = dx1 / 2.0; + float dy3 = dy1 / 2.0; + shadow = ( + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy2 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy2 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy2 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, 0.0 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, 0.0 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx2, dy3 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy3 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx3, dy3 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) + + texture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z ) + ) * ( 1.0 / 17.0 ); + #elif defined( SHADOWMAP_TYPE_PCF_SOFT ) + vec2 texelSize = vec2( 1.0 ) / shadowMapSize; + float dx = texelSize.x; + float dy = texelSize.y; + vec2 uv = shadowCoord.xy; + vec2 f = fract( uv * shadowMapSize + 0.5 ); + uv -= f * texelSize; + shadow = ( + texture2DCompare( shadowMap, uv, shadowCoord.z ) + + texture2DCompare( shadowMap, uv + vec2( dx, 0.0 ), shadowCoord.z ) + + texture2DCompare( shadowMap, uv + vec2( 0.0, dy ), shadowCoord.z ) + + texture2DCompare( shadowMap, uv + texelSize, shadowCoord.z ) + + mix( texture2DCompare( shadowMap, uv + vec2( -dx, 0.0 ), shadowCoord.z ), + texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 0.0 ), shadowCoord.z ), + f.x ) + + mix( texture2DCompare( shadowMap, uv + vec2( -dx, dy ), shadowCoord.z ), + texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, dy ), shadowCoord.z ), + f.x ) + + mix( texture2DCompare( shadowMap, uv + vec2( 0.0, -dy ), shadowCoord.z ), + texture2DCompare( shadowMap, uv + vec2( 0.0, 2.0 * dy ), shadowCoord.z ), + f.y ) + + mix( texture2DCompare( shadowMap, uv + vec2( dx, -dy ), shadowCoord.z ), + texture2DCompare( shadowMap, uv + vec2( dx, 2.0 * dy ), shadowCoord.z ), + f.y ) + + mix( mix( texture2DCompare( shadowMap, uv + vec2( -dx, -dy ), shadowCoord.z ), + texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, -dy ), shadowCoord.z ), + f.x ), + mix( texture2DCompare( shadowMap, uv + vec2( -dx, 2.0 * dy ), shadowCoord.z ), + texture2DCompare( shadowMap, uv + vec2( 2.0 * dx, 2.0 * dy ), shadowCoord.z ), + f.x ), + f.y ) + ) * ( 1.0 / 9.0 ); + #elif defined( SHADOWMAP_TYPE_VSM ) + shadow = VSMShadow( shadowMap, shadowCoord.xy, shadowCoord.z ); + #else // no percentage-closer filtering: + shadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ); + #endif + } + return shadow; + } + // cubeToUV() maps a 3D direction vector suitable for cube texture mapping to a 2D + // vector suitable for 2D texture mapping. This code uses the following layout for the + // 2D texture: + // + // xzXZ + // y Y + // + // Y - Positive y direction + // y - Negative y direction + // X - Positive x direction + // x - Negative x direction + // Z - Positive z direction + // z - Negative z direction + // + // Source and test bed: + // https://gist.github.com/tschw/da10c43c467ce8afd0c4 + vec2 cubeToUV( vec3 v, float texelSizeY ) { + // Number of texels to avoid at the edge of each square + vec3 absV = abs( v ); + // Intersect unit cube + float scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) ); + absV *= scaleToCube; + // Apply scale to avoid seams + // two texels less per square (one texel will do for NEAREST) + v *= scaleToCube * ( 1.0 - 2.0 * texelSizeY ); + // Unwrap + // space: -1 ... 1 range for each square + // + // #X## dim := ( 4 , 2 ) + // # # center := ( 1 , 1 ) + vec2 planar = v.xy; + float almostATexel = 1.5 * texelSizeY; + float almostOne = 1.0 - almostATexel; + if ( absV.z >= almostOne ) { + if ( v.z > 0.0 ) + planar.x = 4.0 - v.x; + } else if ( absV.x >= almostOne ) { + float signX = sign( v.x ); + planar.x = v.z * signX + 2.0 * signX; + } else if ( absV.y >= almostOne ) { + float signY = sign( v.y ); + planar.x = v.x + 2.0 * signY + 2.0; + planar.y = v.z * signY - 2.0; + } + // Transform to UV space + // scale := 0.5 / dim + // translate := ( center + 0.5 ) / dim + return vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 ); + } + float getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) { + vec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) ); + // for point lights, the uniform @vShadowCoord is re-purposed to hold + // the vector from the light to the world-space position of the fragment. + vec3 lightToPosition = shadowCoord.xyz; + // dp = normalized distance from light to fragment position + float dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear ); // need to clamp? + dp += shadowBias; + // bd3D = base direction 3D + vec3 bd3D = normalize( lightToPosition ); + #if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT ) || defined( SHADOWMAP_TYPE_VSM ) + vec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y; + return ( + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) + + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) + + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) + + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) + + texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) + + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) + + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) + + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) + + texture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp ) + ) * ( 1.0 / 9.0 ); + #else // no percentage-closer filtering + return texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ); + #endif + } +#endif + +#ifdef USE_BUMPMAP + uniform sampler2D bumpMap; + uniform float bumpScale; + // Bump Mapping Unparametrized Surfaces on the GPU by Morten S. Mikkelsen + // https://mmikk.github.io/papers3d/mm_sfgrad_bump.pdf + // Evaluate the derivative of the height w.r.t. screen-space using forward differencing (listing 2) + vec2 dHdxy_fwd() { + vec2 dSTdx = dFdx( vUv ); + vec2 dSTdy = dFdy( vUv ); + float Hll = bumpScale * texture2D( bumpMap, vUv ).x; + float dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll; + float dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll; + return vec2( dBx, dBy ); + } + vec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy, float faceDirection ) { + vec3 vSigmaX = dFdx( surf_pos.xyz ); + vec3 vSigmaY = dFdy( surf_pos.xyz ); + vec3 vN = surf_norm; // normalized + vec3 R1 = cross( vSigmaY, vN ); + vec3 R2 = cross( vN, vSigmaX ); + float fDet = dot( vSigmaX, R1 ) * faceDirection; + vec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 ); + return normalize( abs( fDet ) * surf_norm - vGrad ); + } +#endif + +#ifdef USE_NORMALMAP + uniform sampler2D normalMap; + uniform vec2 normalScale; +#endif +#ifdef OBJECTSPACE_NORMALMAP + uniform mat3 normalMatrix; +#endif +#if ! defined ( USE_TANGENT ) && ( defined ( TANGENTSPACE_NORMALMAP ) || defined ( USE_CLEARCOAT_NORMALMAP ) ) + // Normal Mapping Without Precomputed Tangents + // http://www.thetenthplanet.de/archives/1180 + vec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm, vec3 mapN, float faceDirection ) { + vec3 q0 = dFdx( eye_pos.xyz ); + vec3 q1 = dFdy( eye_pos.xyz ); + vec2 st0 = dFdx( vUv.st ); + vec2 st1 = dFdy( vUv.st ); + vec3 N = surf_norm; // normalized + vec3 q1perp = cross( q1, N ); + vec3 q0perp = cross( N, q0 ); + vec3 T = q1perp * st0.x + q0perp * st1.x; + vec3 B = q1perp * st0.y + q0perp * st1.y; + float det = max( dot( T, T ), dot( B, B ) ); + float scale = ( det == 0.0 ) ? 0.0 : faceDirection * inversesqrt( det ); + return normalize( T * ( mapN.x * scale ) + B * ( mapN.y * scale ) + N * mapN.z ); + } +#endif + +#ifdef USE_CLEARCOATMAP + uniform sampler2D clearcoatMap; +#endif +#ifdef USE_CLEARCOAT_ROUGHNESSMAP + uniform sampler2D clearcoatRoughnessMap; +#endif +#ifdef USE_CLEARCOAT_NORMALMAP + uniform sampler2D clearcoatNormalMap; + uniform vec2 clearcoatNormalScale; +#endif + +#ifdef USE_IRIDESCENCEMAP + uniform sampler2D iridescenceMap; +#endif +#ifdef USE_IRIDESCENCE_THICKNESSMAP + uniform sampler2D iridescenceThicknessMap; +#endif + +#ifdef USE_ROUGHNESSMAP + uniform sampler2D roughnessMap; +#endif + +#ifdef USE_METALNESSMAP + uniform sampler2D metalnessMap; +#endif + +#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT ) + uniform float logDepthBufFC; + varying float vFragDepth; + varying float vIsPerspective; +#endif + +#if NUM_CLIPPING_PLANES > 0 + varying vec3 vClipPosition; + uniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ]; +#endif + +void main() { + + +#if NUM_CLIPPING_PLANES > 0 + vec4 plane; + #pragma unroll_loop_start + for ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) { + plane = clippingPlanes[ i ]; + if ( dot( vClipPosition, plane.xyz ) > plane.w ) discard; + } + #pragma unroll_loop_end + #if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES + bool clipped = true; + #pragma unroll_loop_start + for ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) { + plane = clippingPlanes[ i ]; + clipped = ( dot( vClipPosition, plane.xyz ) > plane.w ) && clipped; + } + #pragma unroll_loop_end + if ( clipped ) discard; + #endif +#endif + + vec4 diffuseColor = vec4( 0.0 ); + ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) ); + vec3 totalEmissiveRadiance = vec3( 0.0 ); + +#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT ) + // Doing a strict comparison with == 1.0 can cause noise artifacts + // on some platforms. See issue #17623. + gl_FragDepthEXT = vIsPerspective == 0.0 ? gl_FragCoord.z : log2( vFragDepth ) * logDepthBufFC * 0.5; +#endif + +#ifdef USE_MAP + vec4 sampledDiffuseColor = texture2D( map, vUv ); + #ifdef DECODE_VIDEO_TEXTURE + // inline sRGB decode (TODO: Remove this code when https://crbug.com/1256340 is solved) + sampledDiffuseColor = vec4( mix( pow( sampledDiffuseColor.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), sampledDiffuseColor.rgb * 0.0773993808, vec3( lessThanEqual( sampledDiffuseColor.rgb, vec3( 0.04045 ) ) ) ), sampledDiffuseColor.w ); + #endif + diffuseColor *= sampledDiffuseColor; +#endif + +#if defined( USE_COLOR_ALPHA ) + diffuseColor *= vColor; +#elif defined( USE_COLOR ) + diffuseColor.rgb *= vColor; +#endif +nodeVar0 = ( vec4( 0.6431372549019608, 0.7254901960784313, 1, 1 ).xyz * vec3( 1, 1, 1 ) ); + + diffuseColor = vec4( nodeVar0, 1.0 ); + +#ifdef USE_ALPHAMAP + diffuseColor.a *= texture2D( alphaMap, vUv ).g; +#endif + +#ifdef USE_ALPHATEST + if ( diffuseColor.a < alphaTest ) discard; +#endif + +float roughnessFactor = 0.0; +#ifdef USE_ROUGHNESSMAP + vec4 texelRoughness = texture2D( roughnessMap, vUv ); + // reads channel G, compatible with a combined OcclusionRoughnessMetallic (RGB) texture + roughnessFactor *= texelRoughness.g; +#endif + + roughnessFactor = 0.5; + +float metalnessFactor = 0.0; +#ifdef USE_METALNESSMAP + vec4 texelMetalness = texture2D( metalnessMap, vUv ); + // reads channel B, compatible with a combined OcclusionRoughnessMetallic (RGB) texture + metalnessFactor *= texelMetalness.b; +#endif + +float faceDirection = gl_FrontFacing ? 1.0 : - 1.0; +#ifdef FLAT_SHADED + vec3 fdx = dFdx( vViewPosition ); + vec3 fdy = dFdy( vViewPosition ); + vec3 normal = normalize( cross( fdx, fdy ) ); +#else + vec3 normal = normalize( vNormal ); + #ifdef DOUBLE_SIDED + normal = normal * faceDirection; + #endif + #ifdef USE_TANGENT + vec3 tangent = normalize( vTangent ); + vec3 bitangent = normalize( vBitangent ); + #ifdef DOUBLE_SIDED + tangent = tangent * faceDirection; + bitangent = bitangent * faceDirection; + #endif + #if defined( TANGENTSPACE_NORMALMAP ) || defined( USE_CLEARCOAT_NORMALMAP ) + mat3 vTBN = mat3( tangent, bitangent, normal ); + #endif + #endif +#endif +// non perturbed normal for clearcoat among others +vec3 geometryNormal = normal; + +nodeVar1 = normalize(nodeVary2.xyz); + nodeVar2 = (normalize(nodeVary3)); + nodeVar3 = normalize(nodeVar2); + nodeVar4 = normalize(nodeVary2.xyz); + nodeVar5 = normalize(cross(nodeVary5, nodeVary2.xyz)); + nodeVar6 = normalize(nodeVar5); + nodeVar7 = normalize(nodeVar2); + nodeVar8 = customFn_gDyL2B38DfFZ( nodeVary6, 500.0 ); + nodeVar9 = customFn_eghOGp7cxCWY( nodeVar8 ); + + vec3 mapN = nodeVar9 * 2.0 - 1.0; + mapN.xy *= normalScale; + normal = normalize(vTBN * mapN); + +#ifdef USE_CLEARCOAT + vec3 clearcoatNormal = geometryNormal; +#endif + +#ifdef USE_CLEARCOAT_NORMALMAP + vec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0; + clearcoatMapN.xy *= clearcoatNormalScale; + #ifdef USE_TANGENT + clearcoatNormal = normalize( vTBN * clearcoatMapN ); + #else + clearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection ); + #endif +#endif + +#ifdef USE_EMISSIVEMAP + vec4 emissiveColor = texture2D( emissiveMap, vUv ); + totalEmissiveRadiance *= emissiveColor.rgb; +#endif + + // accumulation +PhysicalMaterial material; +material.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor ); +vec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) ); +float geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z ); +material.roughness = max( roughnessFactor, 0.0525 );// 0.0525 corresponds to the base mip of a 256 cubemap. +material.roughness += geometryRoughness; +material.roughness = min( material.roughness, 1.0 ); +#ifdef IOR + material.ior = ior; + #ifdef SPECULAR + float specularIntensityFactor = specularIntensity; + vec3 specularColorFactor = specularColor; + #ifdef USE_SPECULARINTENSITYMAP + specularIntensityFactor *= texture2D( specularIntensityMap, vUv ).a; + #endif + #ifdef USE_SPECULARCOLORMAP + specularColorFactor *= texture2D( specularColorMap, vUv ).rgb; + #endif + material.specularF90 = mix( specularIntensityFactor, 1.0, metalnessFactor ); + #else + float specularIntensityFactor = 1.0; + vec3 specularColorFactor = vec3( 1.0 ); + material.specularF90 = 1.0; + #endif + material.specularColor = mix( min( pow2( ( material.ior - 1.0 ) / ( material.ior + 1.0 ) ) * specularColorFactor, vec3( 1.0 ) ) * specularIntensityFactor, diffuseColor.rgb, metalnessFactor ); +#else + material.specularColor = mix( vec3( 0.04 ), diffuseColor.rgb, metalnessFactor ); + material.specularF90 = 1.0; +#endif +#ifdef USE_CLEARCOAT + material.clearcoat = clearcoat; + material.clearcoatRoughness = clearcoatRoughness; + material.clearcoatF0 = vec3( 0.04 ); + material.clearcoatF90 = 1.0; + #ifdef USE_CLEARCOATMAP + material.clearcoat *= texture2D( clearcoatMap, vUv ).x; + #endif + #ifdef USE_CLEARCOAT_ROUGHNESSMAP + material.clearcoatRoughness *= texture2D( clearcoatRoughnessMap, vUv ).y; + #endif + material.clearcoat = saturate( material.clearcoat ); // Burley clearcoat model + material.clearcoatRoughness = max( material.clearcoatRoughness, 0.0525 ); + material.clearcoatRoughness += geometryRoughness; + material.clearcoatRoughness = min( material.clearcoatRoughness, 1.0 ); +#endif +#ifdef USE_IRIDESCENCE + material.iridescence = iridescence; + material.iridescenceIOR = iridescenceIOR; + #ifdef USE_IRIDESCENCEMAP + material.iridescence *= texture2D( iridescenceMap, vUv ).r; + #endif + #ifdef USE_IRIDESCENCE_THICKNESSMAP + material.iridescenceThickness = (iridescenceThicknessMaximum - iridescenceThicknessMinimum) * texture2D( iridescenceThicknessMap, vUv ).g + iridescenceThicknessMinimum; + #else + material.iridescenceThickness = iridescenceThicknessMaximum; + #endif +#endif +#ifdef USE_SHEEN + material.sheenColor = sheenColor; + #ifdef USE_SHEENCOLORMAP + material.sheenColor *= texture2D( sheenColorMap, vUv ).rgb; + #endif + material.sheenRoughness = clamp( sheenRoughness, 0.07, 1.0 ); + #ifdef USE_SHEENROUGHNESSMAP + material.sheenRoughness *= texture2D( sheenRoughnessMap, vUv ).a; + #endif +#endif + +/** + * This is a template that can be used to light a material, it uses pluggable + * RenderEquations (RE)for specific lighting scenarios. + * + * Instructions for use: + * - Ensure that both RE_Direct, RE_IndirectDiffuse and RE_IndirectSpecular are defined + * - Create a material parameter that is to be passed as the third parameter to your lighting functions. + * + * TODO: + * - Add area light support. + * - Add sphere light support. + * - Add diffuse light probe (irradiance cubemap) support. + */ +GeometricContext geometry; +geometry.position = - vViewPosition; +geometry.normal = normal; +geometry.viewDir = ( isOrthographic ) ? vec3( 0, 0, 1 ) : normalize( vViewPosition ); +#ifdef USE_CLEARCOAT + geometry.clearcoatNormal = clearcoatNormal; +#endif +#ifdef USE_IRIDESCENCE + float dotNVi = saturate( dot( normal, geometry.viewDir ) ); + if ( material.iridescenceThickness == 0.0 ) { + material.iridescence = 0.0; + } else { + material.iridescence = saturate( material.iridescence ); + } + if ( material.iridescence > 0.0 ) { + material.iridescenceFresnel = evalIridescence( 1.0, material.iridescenceIOR, dotNVi, material.iridescenceThickness, material.specularColor ); + // Iridescence F0 approximation + material.iridescenceF0 = Schlick_to_F0( material.iridescenceFresnel, 1.0, dotNVi ); + } +#endif +IncidentLight directLight; +#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct ) + PointLight pointLight; + #if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0 + PointLightShadow pointLightShadow; + #endif + #pragma unroll_loop_start + for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) { + pointLight = pointLights[ i ]; + getPointLightInfo( pointLight, geometry, directLight ); + #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS ) + pointLightShadow = pointLightShadows[ i ]; + directLight.color *= ( directLight.visible && receiveShadow ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0; + #endif + RE_Direct( directLight, geometry, material, reflectedLight ); + } + #pragma unroll_loop_end +#endif +#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct ) + SpotLight spotLight; + vec4 spotColor; + vec3 spotLightCoord; + bool inSpotLightMap; + #if defined( USE_SHADOWMAP ) && NUM_SPOT_LIGHT_SHADOWS > 0 + SpotLightShadow spotLightShadow; + #endif + #pragma unroll_loop_start + for ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) { + spotLight = spotLights[ i ]; + getSpotLightInfo( spotLight, geometry, directLight ); + // spot lights are ordered [shadows with maps, shadows without maps, maps without shadows, none] + #if ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS ) + #define SPOT_LIGHT_MAP_INDEX UNROLLED_LOOP_INDEX + #elif ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS ) + #define SPOT_LIGHT_MAP_INDEX NUM_SPOT_LIGHT_MAPS + #else + #define SPOT_LIGHT_MAP_INDEX ( UNROLLED_LOOP_INDEX - NUM_SPOT_LIGHT_SHADOWS + NUM_SPOT_LIGHT_SHADOWS_WITH_MAPS ) + #endif + #if ( SPOT_LIGHT_MAP_INDEX < NUM_SPOT_LIGHT_MAPS ) + spotLightCoord = vSpotLightCoord[ i ].xyz / vSpotLightCoord[ i ].w; + inSpotLightMap = all( lessThan( abs( spotLightCoord * 2. - 1. ), vec3( 1.0 ) ) ); + spotColor = texture2D( spotLightMap[ SPOT_LIGHT_MAP_INDEX ], spotLightCoord.xy ); + directLight.color = inSpotLightMap ? directLight.color * spotColor.rgb : directLight.color; + #endif + #undef SPOT_LIGHT_MAP_INDEX + #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_SPOT_LIGHT_SHADOWS ) + spotLightShadow = spotLightShadows[ i ]; + directLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( spotShadowMap[ i ], spotLightShadow.shadowMapSize, spotLightShadow.shadowBias, spotLightShadow.shadowRadius, vSpotLightCoord[ i ] ) : 1.0; + #endif + RE_Direct( directLight, geometry, material, reflectedLight ); + } + #pragma unroll_loop_end +#endif +#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct ) + DirectionalLight directionalLight; + #if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0 + DirectionalLightShadow directionalLightShadow; + #endif + #pragma unroll_loop_start + for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) { + directionalLight = directionalLights[ i ]; + getDirectionalLightInfo( directionalLight, geometry, directLight ); + #if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS ) + directionalLightShadow = directionalLightShadows[ i ]; + directLight.color *= ( directLight.visible && receiveShadow ) ? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0; + #endif + RE_Direct( directLight, geometry, material, reflectedLight ); + } + #pragma unroll_loop_end +#endif +#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea ) + RectAreaLight rectAreaLight; + #pragma unroll_loop_start + for ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) { + rectAreaLight = rectAreaLights[ i ]; + RE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight ); + } + #pragma unroll_loop_end +#endif +#if defined( RE_IndirectDiffuse ) + vec3 iblIrradiance = vec3( 0.0 ); + vec3 irradiance = getAmbientLightIrradiance( ambientLightColor ); + irradiance += getLightProbeIrradiance( lightProbe, geometry.normal ); + #if ( NUM_HEMI_LIGHTS > 0 ) + #pragma unroll_loop_start + for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) { + irradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry.normal ); + } + #pragma unroll_loop_end + #endif +#endif +#if defined( RE_IndirectSpecular ) + vec3 radiance = vec3( 0.0 ); + vec3 clearcoatRadiance = vec3( 0.0 ); +#endif + +#if defined( RE_IndirectDiffuse ) + #ifdef USE_LIGHTMAP + vec4 lightMapTexel = texture2D( lightMap, vUv2 ); + vec3 lightMapIrradiance = lightMapTexel.rgb * lightMapIntensity; + irradiance += lightMapIrradiance; + #endif + #if defined( USE_ENVMAP ) && defined( STANDARD ) && defined( ENVMAP_TYPE_CUBE_UV ) + iblIrradiance += getIBLIrradiance( geometry.normal ); + #endif +#endif +#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular ) + radiance += getIBLRadiance( geometry.viewDir, geometry.normal, material.roughness ); + #ifdef USE_CLEARCOAT + clearcoatRadiance += getIBLRadiance( geometry.viewDir, geometry.clearcoatNormal, material.clearcoatRoughness ); + #endif +#endif + +#if defined( RE_IndirectDiffuse ) + RE_IndirectDiffuse( irradiance, geometry, material, reflectedLight ); +#endif +#if defined( RE_IndirectSpecular ) + RE_IndirectSpecular( radiance, iblIrradiance, clearcoatRadiance, geometry, material, reflectedLight ); +#endif + + // modulation + + vec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse; + vec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular; + +#ifdef USE_TRANSMISSION + material.transmission = transmission; + material.transmissionAlpha = 1.0; + material.thickness = thickness; + material.attenuationDistance = attenuationDistance; + material.attenuationColor = attenuationColor; + #ifdef USE_TRANSMISSIONMAP + material.transmission *= texture2D( transmissionMap, vUv ).r; + #endif + #ifdef USE_THICKNESSMAP + material.thickness *= texture2D( thicknessMap, vUv ).g; + #endif + vec3 pos = vWorldPosition; + vec3 v = normalize( cameraPosition - pos ); + vec3 n = inverseTransformDirection( normal, viewMatrix ); + vec4 transmission = getIBLVolumeRefraction( + n, v, material.roughness, material.diffuseColor, material.specularColor, material.specularF90, + pos, modelMatrix, viewMatrix, projectionMatrix, material.ior, material.thickness, + material.attenuationColor, material.attenuationDistance ); + material.transmissionAlpha = mix( material.transmissionAlpha, transmission.a, material.transmission ); + totalDiffuse = mix( totalDiffuse, transmission.rgb, material.transmission ); +#endif + + vec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance; + #ifdef USE_SHEEN + // Sheen energy compensation approximation calculation can be found at the end of + // https://drive.google.com/file/d/1T0D1VSyR4AllqIJTQAraEIzjlb5h4FKH/view?usp=sharing + float sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor ); + outgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular; + #endif + #ifdef USE_CLEARCOAT + float dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) ); + vec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc ); + outgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat; + #endif + +#ifdef OPAQUE +diffuseColor.a = 1.0; +#endif +// https://github.com/mrdoob/three.js/pull/22425 +#ifdef USE_TRANSMISSION +diffuseColor.a *= material.transmissionAlpha + 0.1; +#endif +gl_FragColor = vec4( outgoingLight, diffuseColor.a ); + +#if defined( TONE_MAPPING ) + gl_FragColor.rgb = toneMapping( gl_FragColor.rgb ); +#endif + +gl_FragColor = linearToOutputTexel( gl_FragColor ); + +#ifdef USE_FOG + #ifdef FOG_EXP2 + float fogFactor = 1.0 - exp( - fogDensity * fogDensity * vFogDepth * vFogDepth ); + #else + float fogFactor = smoothstep( fogNear, fogFar, vFogDepth ); + #endif + gl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor ); +#endif + +#ifdef PREMULTIPLIED_ALPHA + // Get get normal blending with premultipled, use with CustomBlending, OneFactor, OneMinusSrcAlphaFactor, AddEquation. + gl_FragColor.rgb *= gl_FragColor.a; +#endif + +#ifdef DITHERING + gl_FragColor.rgb = dithering( gl_FragColor.rgb ); +#endif + +} + +`, + "cullMode": "back", + "lightModel": "standard", + "renderType": "opaque" +}; \ No newline at end of file diff --git a/utils/vertex.vert b/utils/vertex.vert new file mode 100644 index 0000000..0ecc4c9 --- /dev/null +++ b/utils/vertex.vert @@ -0,0 +1,6 @@ +// Вычисляем расстояние от текущей вершины до некоторой точки в пространстве +vec3 pointToMeasure = vec3(1.0, 1.0, 1.0); // Некоторая точка, до которой вы хотите измерить расстояние + +// Используем функцию distance, чтобы вычислить расстояние от вершины до точки +vDistance = distance(pointToMeasure, position.xyz); +vPosition = position.xyz; \ No newline at end of file